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Introduction 
 
The problem of determining the operating point of a cylindrical permanent magnet is a 
recurring one.  Since the flux density is not uniform inside the magnet, every part of the 
magnet operates at a slightly different operating point.  However, it is useful to have a 
simplified model of a cylindrical magnet that assumes uniform operating point 
throughout the magnet.  If properly formulated, this sort of model can provide insight 
about flux density in the magnet, energy stored by the magnet, and so on.  This note will 
describe a simple circuit model of a magnet. To aid in the formulation of such models, a 
simple formula will be presented for the reluctance of the air traversed by the magnet 
circuit. 
 
 
Magnet Model Assumptions 
 
For the purposes of this note, it will be assumed that the magnet is an “ideal” magnet with 
an internal relative permeability of 1.  In this case, the following simple formula gives the 
remanent flux density of the magnet as a function of energy product: 
 

 
 
where BHmax is energy product in units of MGOe and the resulting Br is in units of Tesla. 
 
 
Circuit Model of a Magnet 
 
A commonly used model has the form shown below in Figure 1.  The model of the 
magnet itself consists of a flux source, , in parallel with the magnet’s internal 
reluctance, Rm. Reluctance Rl represents the magnetic reluctance of the air section 
between the magnet’s poles.  
 



 
Figure 1: Magnet modeled as a flux source and parallel reluctance. 

 
The internal reluctance of the magnet, Rm, is defined in terms of the geometry of the 
magnet: 
 

 
 
where l is the length of the magnet, a is the cross-section area of the magnet, and  is the 
magnetic permeability of free space. 
 
The remanent flux of the magnet is: 
 

 
 
where Br is the remanent flux density of the magnet. 
 
It is convenient to normalize the load reluctance by the internal reluctance of the magnet: 
 

 
 
where c is a dimensionless scaling factor that depends on magnet geometry. However, the 
value of c as a function of magnet dimensions is not intuitively obvious.  An approximate 
but simple expression for c is derived later in this note. 
 
 
Analysis of Magnetic Circuit Equations 
 
Two equations can be written that describe the magnetic circuit.  The conservation of flux 
in the circuit implies the first equation: 



 
 

 
The second equation is the magnetomotive force (MMF) loop equation associated with 
the flux path that passes through the demagnetizing reluctance and back through the load 
reluctance.  Since there is no MMF source in this loop, the total MMF drop must equal 
zero: 
 

 
 

Solving these equations for demagnetizing and load flux yields: 
 

 
 

 
 
 
The factor relating the remanent flux to the demagnetizing flux is known in the literature 
as the “demagnetization factor”, usually denoted as N: 
 

 
 

 
Determination of the Demagnetization Factor 

 
Historically, several different rationale have been employed to determine a suitable value 
of N. The selection of N on the basis of predicting the average demagnetizing field at the 
mid-magnet cross-section is called the “fluxmetric (or ballistic) demagnetization factor”.  
The selection of N for the accurate prediction of the average demagnetizing field over the 
entire volume of the magnet is known as the “magnetometric demagnetization factor”.   
 
A simple way to compute a demagnetization factor similar to the magnetometric one is to 
choose the demagnetization factor on the basis of the numerically computed ratio of 
energy to coenergy. The FEMM finite element program will be used to compute the 
stored energy for various magnet aspect ratios, and an approximate but simple expression 
for the demagnetization factor will be deduced.  
 
 
Magnetic Field Energy 
 
To determine the relationship of energy and coenergy to the demagnetization factor, the 
energy and coenergy stored in the magnetic field of the permanent magnet must first be 
derived.  The energy can be calculated by summing the energy stored in each reluctance: 



 

 
 

It is interesting to note the simple and direct dependence of the stored energy on the 
demagnetization factor. 
 
Stored energy W can be directly interpreted as the ability of the magnet to perform 
mechanical work.  When the magnet is shorted by a keeper, the demagnetization factor, 
and thus the stored energy, are both zero.  Since there is no other source or sink for the 
stored energy, stored energy W must be delivered to the system as mechanical work when 
a keeper is applied.  
 
 
Magnetic Field Coenergy 
 
Coenergy is a useful quantity for the computation of forces in magnetic systems that 
combine permanent magnets and coils. The coenergy can be computed by considering the 
Thévenin-equivalent circuit of the permanent model.  The Thévenin model is pictured in 
Figure 2.  The coenergy is simply the energy deduced from the Thévenin magnet model.  
 

 
 

The load flux is the same for both the Norton and Thévenin circuits so that it is 
straightforward to write an expression for the Thévenin circuit’s energy, denoted W’: 
 



 
   

Comparing the expressions for energy, W, and coenergy, W’, a straightforward method of 
computing the load reluctance factor, c, from finite element results is to evaluate the 
expression: 

 
 

where W and W’ are obtained by integrating over the entire solution domain. 
 
An OctaveFEMM function was created to automatically compute c for a given l/d 
(length/diameter) ratio. This function is discussed in detail in the Appendix. The results 
of this function, evaluated on a range from l/d =0.1 to l/d = 10.  The results from the 
OctaveFEMM analyses are pictured below in Figure 3.   
 

 
Figure 3: Load reluctance coefficient versus magnet l/d ratio. 

 
After investigating various fits for the finite element results, it was found that the 
following expression is both simple and closely matches the load reluctance coefficient, 
c, over a wide range of magnet aspect ratios: 
 

 
 



The implied formula for demagnetization factor, N, is: 
 

 
 

This form shows good agreement with the tabulated values for magnetometric 
demagnetizing factor in [Chen1991], wherein a closed-form expression for the 
inductance of a single-layer coil containing elliptic integrals is used to generate the 
magnetometric demagnetization factor. 
 
 
Conclusions 
 
A simple circuit model of a cylindrical permanent magnet has been presented.  Simple, 
approximate expressions for the reluctance of the air section of the magnetic circuit and 
the associated magnetometric demagnetization factor have been presented. 
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Appendix A: getc.m 
 
This function computes the load reluctance factor, c, for a uniformly magnetized cylinder 
with a given length/diameter ratio. 
 

 
The function creates a permanent magnet of the prescribed aspect ratio.  The magnet is 
placed within a spherical shell with a somewhat magnetically permeable outer shell 
whose permeability is selected to give the same impedance as unbounded space (i.e. the 
edge region acts like a “first-order asymptotic boundary condition”).  In FEMM, this type 
of impedance boundary condition is typically applied as a “built-in” boundary condition 
type at the boundary.  However, some energy is stored in the external region implied by 
the asymptotic boundary condition.  Implementing the asymptotic boundary condition 

function c=getc(ld) 
 z=ld; 
 ro=1/2; 
 r=2*max([ro,z]); 
 rx=1.1*r;   
 openfemm; 
 newdocument(0); 
 mi_probdef(0,'inches','axi',1e-8,0,30); 
 mi_drawrectangle(0,-z/2,ro,z/2); 
 mi_drawarc(0,-r,0,r,180,5); 
 mi_drawarc(0,-rx,0,rx,180,5); 
 mi_drawline(0,-rx,0,rx); 
 mi_addcircprop('icoil',1,1); 
 mi_addblocklabel(ro/2,0); 
 mi_addblocklabel((r+ro)/2,0); 
 mi_addblocklabel((r+rx)/2,0); 
 mi_addmaterial('magnet',1,1,10^6,0,0,0,0,1,0,0,0); 
 mi_addmaterial('exterior',10,10); 
 mi_addmaterial('air' ,1,1); 
 mi_addboundprop('zero',0,0,0,0,0,0,0,0,0); 
 mi_selectlabel(ro/2,0); 
 mi_setblockprop('magnet',0,r/100,'<None>',90,0,1); 
 mi_clearselected; 
 mi_selectlabel((r+ro)/2,0); 
 mi_setblockprop('air',0,r/100,'<None>',0,0,0); 
 mi_clearselected; 
 mi_selectlabel((r+rx)/2,0); 
 mi_setblockprop('exterior',0,r/100,'<None>',0,0,0); 
 mi_clearselected; 
 mi_selectarcsegment(rx,0); 
 mi_setarcsegmentprop(5,'zero',0,0); 
 mi_saveas([tempdir,'tmp.fem']); 
 mi_analyze; 
 mi_loadsolution; 
 mo_groupselectblock(0); 
 energy=mo_blockintegral(2); 
 coenergy=mo_blockintegral(17); 
 c=energy/coenergy; 
 closefemm; 
 



“explicitly” allows access trivially to all problem regions for energy/coenergy integration 
so that accurate energy results are obtained. A picture of a typical solution is shown 
below in Figure 4. 
 

 
 

Figure 4: Solution region generated by the getc.m script for an l/d ratio of 1. 
 
 


