Improved Continuum Skin and Proximity Effect Model for Hexagonally Packed Wires

David Meeker, Ph.D.

dmeeker@ieee.org

09May2011

Induced currents

- When conductors are exposed to a timevarying magnetic field, currents are induced
- Losses that occur when conducting wires are exposed to a magnetic field
- Known as "Skin Effect" and "Proximity Effect"

Current density in a winding exposed to an AC magnetic field

Skin and Proximity Loss Effects

Skin Effect:

- Net current flows in conductor
- Current pushed towards surface of conductor by field due to current

Proximity Effect:

- No net current in conductor
- Currents induced by externally applied field

Motivation

- Lots of elements needed to explicitly represent each wire in a coil
- Desire a continuum method that lets us calculate accurate Proximity and Skin Effect losses
- Proximity effect captured by a complex-valued bulk magnetic permeability
- Skin effect captured by a complex-valued bulk conductivity
- Concentrating on the case of Hexagonal Packing

Equivalent Foil Model

- Classical approach: Pretend winding is a set of foils/bars
 - Can be solved analytically for equivalent permeability, conductivity
 - Rigorously shows how discrete conductors can be represented as a continuum
 - Can pick foil properties that give an OK agreement to wire winging
- Here, foil solution used as an approx form for fitting FEA results

Equivalent Foil Problem

Decompose problem into 3 sub-problems:

1. Impedance to flux with no bulk flux linkage to the coil (avg. A over foil=0)

$$A_{xx} = j\omega\sigma_f\mu_o A$$
 subject to $A(\pm b) = \pm \frac{A_1 - A_0}{2}$

2. Resistive Losses (and some reactive power due to the local field)

$$A_{xx} = \sigma_f \left(j \omega \mu_o A + \mu_o \Delta V_r \right)$$
 subject to $A(\pm b) = 0$

3. Flux linkage to the ambient magnetic field

$$A_{xx} = \sigma_f \left(j \omega \mu_o A + \mu_o \Delta V_i \right); \quad A(\pm b) = \frac{A_1 + A_0}{2}$$

Approximate Form for Curve Fit

Analytical solution from foil with gap ϵ between foils:

$$\mu_{eff} = \left(\frac{b}{b+\epsilon}\right)\mu_{fd} + \left(\frac{\epsilon}{b+\epsilon}\right)\mu_o \quad \text{where}$$
$$\rho_r = \left(\left(\frac{\mu_o}{\sigma_f \mu_{fd}}\right)\left(\frac{b+\epsilon}{b}\right) + j\omega\mu_o\epsilon(b+\epsilon)\right)$$

$$\mu_{fd} = \mu_o \frac{\tanh\sqrt{j\omega\sigma_f\mu_o b^2}}{\sqrt{j\omega\sigma_f\mu_o b^2}}$$

 $b/(b+\,\varepsilon)$ is foil's fill factor

Approximate form for fitting to FEA data:

$$\mu_{eff} = (1 - c_2)\mu_o + c_2\mu_o \frac{\tanh\sqrt{jc_1\Omega}}{\sqrt{jc_1\Omega}}$$
$$\rho_r = \left(\frac{1}{\sigma \text{ fill}}\right) \left(\frac{\sqrt{jc_3\Omega}}{\tanh\sqrt{jc_3\Omega}} + jc_4\Omega\right)$$

Where c1, c2, c3, c4 are functions of copper fill factor

FEA Skin and Proximity Domains

- For foil, easy to tell where to draw the boundary conditions.
 - For hex winding, no clear edges where foillike BCs can be defined
 - Instead, define slightly different domains that yield the same computational results.

July

Parameter Fitting Approach

- Define c₂ in terms of c₁ to exactly satisfy an analytical expression for low-frequency effective permeability
- Define c₄ in terms of c₃ to exactly satisfy an expression for low-frequency / low fill factor effective resistivity
- Assume cubic polynomial forms for c₁ and c₃
- Choose parameters to minimize the normalized RMS Error:

Error =
$$\left[\sum_{1}^{n} \frac{1}{n} \left| \frac{z_n - \hat{z}_n}{\hat{z}_n} \right|^2 \right]^{\frac{1}{2}}$$

Fit to Effective Permeability

Nor

0.500 0.100 0.050 $1/(\sigma \rho_r)$ 0.010 0.005 0.001 5×10⁻⁴ 1×10^{-4} 0.01 0.1 10 1000 100 1 Ω (Nondimensional Frequency)

Fit to Effective Resistivity

Example

- Coil with copper wire
- ID = 10.2 mm
- OD = 35 mm
- Axial Length = 11.8 mm
- 114 turns
- Consider wire diameters of 0.8, 1.0, 1.1 mm

Exact and Approx Resistance

Exact and Approx Inductance

Conclusions

- Approximate but closed-form expressions made for permeability and conductivity that accurately represent Skin, Prox effects in hexagonally wound coils
- Expressions based on a form suggested by the analytical solution to equivalent foils
- Parameters identified via curve fit to a large number of finite element results
- Approach is now implemented in FEMM 4.2 and "automatically" applied to every wound coil.