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Continuum Representation of Wound Coils via an
Equivalent Foil Approach

David Meeker

Abstract— Continuum methods for representing skin and prox-
imity effects in round-wire windings have been previously pre-
sented in the literature. Although the economy of these methods
is well-established, the existing approaches require preliminary
numerical field computations to determine the equivalent mater-
ial properties of the wound region. The present work derives
approximate but closed-form expressions for the equivalent
conductivity and permeability of regions filled with hexagonally
packed round wire, allowing proximity and skin effects to be
included with ease in 2D AC field computations.

Index Terms— Eddy currents, finite element methods, proxim-
ity effect, skin effect.

I. I NTRODUCTION

CONTINUUM representations of skin/proximity effect
losses in wound coils have been previously reported in

the literature. Moreauet al. [1] described the use of a complex-
valued magnetic permeability for the continuum representation
of transformer windings with rectangular conductors, present-
ing closed-form expressions for frequency-dependent perme-
ability. Podoltsevet al. [2] consider windings with round wires
assuming that the turns are packed in a square grid. Numerical
solutions for complex-valued permeability for different fills are
presented graphically. Since turns naturally tend to stackin
a hexagonal pattern, accommodation of hexagonal packing is
desirable. Gyselinck and Dular [3] present a numerical method
for obtaining equivalent properties of a round-wire winding
with hexagonal packing. These continuum representations of
wound coils allow proximity and skin effect losses to be
represented in numerical models without explicitly modeling
each turn in the coil.

However, continuum skin/proximinty modeling techniques
are not yet widely used in practice. Although the economy
of this approach has been well-established in the literature,
the existing approach for hexagonally packed round wire coils
require preliminary numerical field computations for the deter-
mination of equivalent material properties. The requirement of
these additional analyses makes the method less attractive. The
present work derives approximate but closed-form expressions
for the equivalent conductivity and permeability of regions
filled with hexagonally packed round wire, allowing proximity
and skin effects to be included in 2D AC field computations
with trivial additional effort.

This work derives the continuum properties for wound
regions using a development similar to the widely used
Dowell’s method of proximity loss calculation [5]. Dowell’s
method replaces a winding composed of round wires with an
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Fig. 1. Conducting foil solution domain

“equivalent” foil winding that admits an analytical solution for
proximity losses. The present work also uses an equivalent foil
approach. Equivalent foil dimensions are selected to matchthe
DC losses and low frequency proximity losses of hexagonally
packed round wires.

II. CONTINUUM REPRESENTATION OF ASINGLE FOIL

CONDUCTOR

To establish an equivalent foil representation of a winding,
the equivalent foil itself must first be analyzed.For the problem
of a conducting foil, consider the domain pictured in Figure1.
Flux travels vertically up the foil such that the problem is
effectively one-dimensional. The vector potential,A, inside
the foil is described by the differential equation [4]:

d2A

dx2
= jωσfµoA + σfµo∇v (1)

wherev represents the voltage gradient applied to the foil and
ω, σf , andµo are the frequency in rad/s, foil conductivity in
S/m, the permeability of free space in H/m, andj =

√
−1. For

this problem, the boundary atx = −b is fixed atA0 and the
boundary atx = b is fixed atA1.

For the purposes of this analysis, the applied voltage gradi-
ent,∇v, will be broken into two parts:

∇v = ∇vi + ∇vr (2)

where∇vr and∇vi represent the portions of the voltage drop
due to resistive and inductive effects, respectively.

Since the problem is a linear one, the problem can be
decomposed into three simpler problems. The results to these
sub-problems can then be added together to yield the complete
solution for the foil. The three problems are:
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1) Impedance to flux with no net flux linkage to the foil.
This problem satisfies the differential equation:

Axx = jωσfµoA subject to A(±b) = ±A1 − A0

2
(3)

2) Resistive losses (and some reactive power due to the
local field) in the foil. This problem satisfies:

Axx = σf (jωµoA + µo∇vr) subject to A(±b) = 0
(4)

3) Flux linkage to the ambient magnetic field. This problem
satisfies:

Axx = σf (jωµoA + µo∇vi) ; A(±b) =
A1 + A0

2
(5)

A. Impedance to External Flux

The solution to (3), representing the impedance of the foil
to externally driven flux, is:

A =

(

A1 − A0

2

)

sinh
(√

jωσfµob2 x
b

)

sinh
√

jωσfµob2
(6)

The value of eq. (6) is that it can be used to deduce a single
frequency-dependent permeability for the foil, includingthe
effects of the eddy currents. The foil might then be replaced
by a single (albeit complex-valued) permeability with eddy
currents, rather than a somewhat complicated eddy current
problem.

The field intensity required to drive the flux in the foil is
the field intensity at the outer edge of the foil:

H(b) = − 1

µo

dA

dx
(b)

=

(

A0 − A1

2µob

)

√

jωσfµob2

tanh
√

jωσfµob2
(7)

The average flux in the foil is:

Bavg = −1

b

∫ b

0

dA

dx
= −A(b)

b
=

A0 − A1

2b
(8)

The frequency dependent permeability of the foil (µfd) is then:

µfd =
Bavg

H(b)
= µo

tanh
√

jωσfµob2

√

jωσfµob2
(9)

B. Resistance and Local Reactive Power

The second problem, eq. (4), is used to derive the resistive
losses of the wire and a small additional contribution to the
winding’s reactive power. The solution to (4) is:

A(x) =
j∇vr

ω

[

1 − cosh
(√

jωσfµob2 x
b

)

cosh
√

jωσfµob2

]

(10)

This solution can be used to determine a relationship between
the average current density in the coil and the voltage that
is required to drive it. Eq. (10) prescribesA as a function
of the applied voltage gradient, but the actual current density
flowing in the foil as a result of the voltage gradient is as yet

undetermined. From [4], the current flowing at each point in
the foil is:

J = − (σf∇vr + jωσA) = σf∇vr

cosh
(√

jωσfµob2 x
b

)

cosh
√

jωσfµob2

(11)
The average current density over foil is then:

Jfoil = −∇vr

[

σf

tanh
√

jωσfµob2

√

jωσfµob2

]

= −∇vr

(

σfµfd

µo

)

(12)

The voltage drop can then be written in terms of the average
current density as:

∇vr = −
(

µo

σfµfd

)

Jfoil (13)

At DC, the voltage gradient is strictly real-valued. As the
frequency increases, permeabilityµfd in the denominator
increases the required voltage and makes the voltage complex-
valued. The imaginary part of the voltage can be interpreted
as reactive power due to flux flowing locally in the foil.

C. Linkage to Ambient Flux

The linkage of the foil to “ambient flux” (i.e. flux due to
neighboring foils, interactions with surrounding structure, etc.)
are described by (5). This equation has a trivial solution:

A =
A0 + A1

2
(14)

However, there is more subtlety than first meets the eye. The
utility of this equation is that it can be used to determine
the portion of the voltage gradient necessary to support the
ambient flux(that is, the applied voltage gradient that must
be present to have no net current in this sub-problem). The
induced current is:

J = −σf (∇vi + jωA) = 0 (15)

so that the voltage gradient that results in zero current is:

∇vi = −jω

(

A0 + A1

2

)

(16)

The subtlety lies in the fact that when this equation is eventu-
ally evaluated to obtain terminal voltage, the boundary values
(A0 and A1) will not be explicitly available. It is therefore
desirable to write the boundary values in terms of the average
value of the continuum approximation ofA over the foil.
Denoting the continuum representation of vector potentialas
A, it will be assumed thatA is generally described by the
differential equation:

− 1

µfd

∇2A = Jfoil (17)

To identify the boundary conditions in terms ofA, (17) must
be solved subject to the same boundary conditions as the foil,
i.e. A(−b) = A0, A(b) = A1. The solution to (17)is:

A =
1

2
µfdJfoilb

2
(

1 −
(x

b

))

+
A1 − A0

2

(x

b

)

+
A0 + A1

2
(18)
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AveragingA over the width of the foil and yields:

Aavg =
1

3
µfdJfoilb

2 +
A0 + A1

2
(19)

Solving for(A0+A1)/2, the boundary conditions of (5) yields:

A0 + A1

2
= Aavg − 1

3
µfdJfoilb

2 (20)

The voltage drop due to the ambient field in terms ofA, the
continuum representation of vector potential, is obtainedby
substituting (20) into (16):

∇vi = −jωAavg +
1

3
jωµfdJfoilb

2 (21)

D. Equivalence of Continuum and Exact Representations

In the previous section, it was assumed that (17), in which
the effects of eddy currents are implicitly represented viaa
complex-valued permeability, is a substitute for (1), where the
eddy currents explicitly represented. However, the equivalence
of these two forms is not trivially evident. This section
explores the basis upon which the substitution of (17) for (1)
was made.

Solutions to (17) and (1) are equivalent in terms of their
influence on the magnetic field external to the foil. At any
boundaries in a magnetic problem, the field must have normal
continuity of flux density and tangential continuity of field
intensity. In the 1D problem at hand, the continuity conditions
are enforce by continuity of vector potentialA (analogous
to enforcing continuity of normal flux) and continuity ofH
in the x-direction. A differential equation describing a region
could be considered, from the point of view of an observer
outside that region, as prescribing a relationship betweenthe
boundary conditions at the edges of the region of interest.
This relationship is embodied by an equation that represents
two boundary conditions in terms of two other boundary
conditions and a forcing term due to currents in the region
of interest. In the particular case of a conducting foil, the
field intensity at the boundaries might be represented asH1

and H0 at x = b,−b respectively. By direct computation, it
can be verified that both the continuum solution, (18), and
solution for the potential distribution within a foil obtained
by summing (6), (10), and (14) satisfy the following matrix
equation relating the boundary conditions on opposite edges
of the foil:
{

H0

H1

}

=
1

2bµfd

[

−1 1
1 −1

]{

A0

A1

}

+

{

−1
1

}

Jfoilb

(22)
From the point of view of the effect on the external field, the
continuum representation is equivalent to the exact represen-
tation.

E. Combined Solution for a Foil Conductor

Finally, a combined expression for the voltage gradient can
be written by substituting (13) and (21) into (2).

−∇v =
µo

σfµfd

Jfoil −
1

3
jωµfdJfoilb

2 + jωAavg (23)
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Fig. 2. Gapped conducting foil solution domain

Eq. (23) can be represented more succinctly as:

−∇v =
Jfoil

σfd

+ jωAavg (24)

where

σfd =

[

µo

σµfd

− 1

3
jωµfdb

2

]

−1

(25)

The second bracketed term in (25) has been neglected in
previous works. Its function could be thought of as subtracting
some reactive power so that the energy stored locally in foil
is not account for twice,i.e. in the integration ofA over the
foil and in the analytical solution for the field in the foil.

There are multiple abutting foils connected in series to make
a winding, the voltage required to drive the entire array of
conductors can then be obtained by integrating the voltage
gradient over the entire region:

v =

∮

(−∇v · dl) =
n
∫∫∫

(

jωA + 1
σfd

Jfoil

)

dV
∫∫

dS
(26)

wheren denotes the number of conductors in the winding. It
can be noted that for this 1-D problem, the stored energy,
losses, etc., as derived from the continuum representation
are exactly the same as that which would be computed by
considering the eddy currents explicitly.

III. G APPEDFOIL CONDUCTORS

As described in [5], proximity and skin effect losses are
often approximated for the purposes of transformer design by
equivalent gapped foil conductors. In this section, the effective
permeability and conductivity of a gapped foil conductor will
be derived, building upon the results of the single foil analysis.
In the subsequent section, foil properties will be chosen to
yield an analytical but approximate solution for the bulk
properties of round wire coil with hexagonal packing.

The geometry to be considered for the gapped foil conductor
is pictured in Figure 2. The problem is simplified by replacing
the foil by its equivalent continuum representation, as derived
in the previous section. As with the plain foil, the problem is
broken into three sub-problems

1) Boundary conditionsA = ± (A1 − A0) /2 with no
applied foil current;
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2) Boundary conditionsA = 0 with constant current
density Jlam applied evenly over the width of the
continuum-representation foil;

3) Boundary conditionsA = ± (A1 + A0) /2 with no
applied foil current.

A. Impedance to External Flux

The goal of the first sub-problem is merely to determine the
effective permeability of the composite region. It can be noted
that the region consists of flux path of permeabilityµfd and
width 2b driven in parallel with an air flux path of width2ε.
In this case, the effective permeability can be written downby
inspection:

µeff =

(

b

b + ε

)

µfd +

(

ε

b + ε

)

µo (27)

B. Resistance and Local Reactive Power

The objective of this sub-problem is to determine a resis-
tance contribution for the foil and air combined. For the sub-
problem withA = 0 boundary conditions on the outer edges
of the air, the field in the foil is described by:

− 1

µfd

d2A

dx2
= Jfoil (28)

and in the air by:

− 1

µo

d2A

dx2
= 0 (29)

with continuity in A and H at the air/foil interface. The
solution is:

A = Jfoil

(

1

2
µfd

(

b2 − x2
)

+ µobε

)

for |x| ≤ b (30)

A = µoJfoilb (b − x + ε) for b ≤ x ≤ b + ε (31)

To compute the “resistive” portion of the voltage gradient the
averageA over the foil is needed. The average of eq. (30)
over the width of the foil is:

Afoil =
1

3
Jfoilb (µfdb + 3µoε) (32)

The voltage gradient can then be computed as:

−∇vr =
Jfoil

σfd

+ jωAfoil (33)

Substituting forσfd from (25) and forAfoil from (32) and
simplifying yields:

−∇vr =

(

µo

σµfd

+ jωµobε

)

Jfoil (34)

However, for the purposes of homogenizing the region, the
applied current density must be represented as an average over
the entire region, not just the foil. In this case, the average
current,Javg, can be defined in terms of the foil current, as:

Javg =

(

b

b + ε

)

Jfoil (35)

so that the∇vr part of the voltage drop is:

−∇vr =

((

µo

σfµfd

)(

b + ε

b

)

+ jωµoε(b + ε)

)

Javg (36)

The second term in (36) essentially represents the energy
stored locally in the air around the foil.

R
W

b

b+ε

Fig. 3. Hexagonally packed winding and equivalent foil geometry.

C. Linkage to Ambient Flux

The third sub-problem again involves the linkage to the
ambient flux. The development is identical that of (21); the
only difference is that the foil pitch isb + ε for the present
case instead ofb for the foil alone. The resulting “inductive”
voltage gradient is therefore:

∇vi = −jωAavg +
1

3
jωµeffJavg (b + ε)

2 (37)

D. Combined voltage gradient

Eqs. (36) and (37) can be combined to yield the total voltage
gradient:

−∇v =
Javg

σeff

+ jωA (38)

where

σeff =
1

µo

σf µfd

(

b+ε
b

)

+ jωµoε(b + ε) − 1
3jωµeff (b + ε)

2

(39)
The effective properties of the gapped foil region for use inan
equivalent continuum model are permeabilityµeff prescribed
by (27) and conductivity described by (39).

IV. EQUIVALENT FOIL FOR AN HEXAGONALLY PACKED

WINDING

Now that µeff and σeff have been derived for a foil
winding, the parameters in these expressions can be chosen
so that losses in a winding consisting of round wires are
approximated as closely as possible by the foil winding-based
formulas. Although the foil winding’s effective properties
are derived from the analysis of a 1D geometry, the60o

symmetry of the hexagonally packing implies that the effective
permeability derived from a 1D analysis can be employed in
subsequently 2D calculations.

The domain of interest for a hexagonally packed winding is
pictured in Figure 3. To choose an equivalent foil, conductivity
σ, foil width b and foil pitchb+ε must be chosen so that results
the closely match the round wire losses are obtained over
some frequency range. A reasonable way to choose these three
quantities would be to satisfy the following three conditions:

1) DC losses in the winding match DC losses in the
equivalent foil;
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2) Low-frequency proximity losses (in the low-frequency
limit at which the reaction field from the induced prox-
imity loss currents can be ignored) are identical for the
winding and equivalent foil;

3) The pitch of the columns in the hexagonal winding is
the same as the foil pitch in the equivalent winding.

The properties of the hexagonally packed winding are
represented by conductivity (σ), copper fill fraction (fill), and
wire radius (R). It is first useful to write distance from the
center of the wire to the nearest point on its corresponding
hexagonal cell (denoted asW ) in terms of the winding’s fill
factor:

W = R

√

π

2
√

3 fill
(40)

From Figure 3, it is clear that the column pitch of the
hexagonal winding is

√
3W , so that:

(b + ε) =

√
3

2
W =

√√
3π

8 fill
R (41)

As can be seen in Figure (3), the height of each hexagonal
cell in each column of cells is equal to2W . For the purposes
of an equivalent foil, losses for a section2W in length can be
compared to the losses for a single strand of wire. For resistive
losses, the condition is straightforward:

πR2

σ
=

4bW

σfoil

(42)

For the purposes of low-frequency proximity loss compu-
tation, it is assumed that the foil and wire are both subject to
a uniform flux densityB directed along the centerline of the
foil/wire. In both cases, the induced current is proportional
to the distance from the centerline of the wire or foil and
proportional to conductivity. Integrating and equating losses
over a single strand and over a single2W × 2b foil segment
yields:

(

1

8
πR4σω2

)

B2 =

(

2

3
b3Wσfoilω

2

)

B2 (43)

The foil conductivity and foil half-width that satisfy (42)
and (43) are:

b =

√
3

2
R (44)

σf =
σπR

2
√

3W
=

√

fill π

2
√

3
σ (45)

Equations (27) and (39) can then be used as the effective
permeability and conductivity of the hexagonally packed coil,
where the equivalent foil winding’s parameters are defined
by (41), (44), and (45).

The effective material properties of the wound region can
be rearranged into a more convenient non-dimensional form
as:

µeff = (1 − c)µo + cµfd (46)

σeff =
σfill

µo

µfd
+ (1−c)

c
jΩ − 1

3
µeff

cµo
jΩ

(47)

where parameterc, representing the fill factor of the equivalent
foil geometry, is defined as

c =

√

2
√

3

π
fill (48)

and non-dimensional frequencyΩ is defined as:

Ω =

(√
3πcωσµoR

2

8

)

(49)

and the frequency-dependent permeability of a single equiv-
alent foil, µfd, written in terms of the non-dimensional fre-
quency is:

µfd =
µo tanh

√
jΩ√

jΩ
(50)

V. A DDITIONAL LOCAL ENERGY STORAGE IN DC
PROBLEMS

As shown above, the effective conductivity of a wound
region is complex-valued. The imaginary part of the conduc-
tivity implies extra reactive power due to magnetic field energy
stored locally around the wires in a way which does not come
into evidence by inspecting only the countinuum field solution.
This extra magnetic field energy also exists in DC problems
and should be included in volume integrations of magnetic
field energy,i.e. to obtain proper values of inductance that
include the local effects of the wire’s packing on stored energy.

Similar to the usual case with a real-valued conductivity,
the peak power density,P , is defined as:

P =
1

σeff

|Javg|2

=
Re(σeff ) − j Im(σeff )

|σeff |2
|Javg|2 (51)

where it is assumed that all quantities are represented as
amplitudes (rather than RMS) for the purposes of this analysis.
The real part ofP denotes resistive losses. The imaginary part
of P corresponds to reactive power:

Im(P ) = −
(

Im(σeff )

|σeff |2

)

|Javg|2 (52)

For some inductance,L, with current i flowing through it,
the peak reactive power per cycle isωL|i|2 and the energy
corresponding to that instant in time is12L|i|2. If the peak
power is known, the corresponding stored energy can be
obtained simply by dividing by2ω. Energy density can be
obtained from reactive power density in the same way:

Energy Density= − 1

2ω

(

Im(σeff )

|σeff |2

)

|Javg|2 (53)

To obtain the additional stored energy at DC, the limit
of (53) must be taken asω → 0. To compute this limit, first
consider the Taylor series expansion of the inverse of (47)
aboutΩ = 0:

1

σeff

≈ 1

σfill
+ jΩ

(

1 − c

cσfill

)

(54)
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Fig. 4. Example air-cored coil with the windings represented explicitly and
as a continuum region at 50kHz.

Following from (53), the stored energy density is:

Energy Density=
Ω

2ω

(

1 − c

cσfill

)

|Javg|2 (55)

Substituting forΩ from (49) and for fill from (48), eq. (55)
simplifies to:

Energy Density=
3

8
µoR

2

(

1 − c

c2

)

|Javg|2 (56)

VI. EXAMPLE CALCULATION

The range of validity of the continuum representation can
be explored by the comparison of finite element solutions with
a continuum and explicit models of a wound coil. Here, the
axisymmetric domains pictured in Figure 4 are considered
for the explicitly wound and continuum models. For both
the explicit and continuuum models, the problem domain is
a semicircular region with a radius of 20 mm. A first-order
asymptotic boundary condition [6] is used on the outer radius
of the region to economically approximate an open outer
boundary. For the explicitly represented coil, the top inner turn
is centered atr = 5.6, z = 5.4. Referring to the dimensions
in Figure 3, distanceW from the center of each hexagonal
cell to the center of one of the cell’s sides is 0.6mm. The
coil consists of 114 turns of copper with a conductivity of
58 MS/m wound in alternating layers of 10 and 9 turns. For
the continuum model, the coil is region is chosen as the tight
bounding box of the coil as wound with a 1mm diameter wire:
an inner radius of 5.1mm, an outer radius of 17.5315mm, and
an axial length of 11.8 mm. Wire diameters of 0.8mm, 1mm,
and 1.1mm are considered, representing 39.05%, 61.04%, and
73.85% copper fills of the continuum coil region, respectively.

Both the explicit and continuum geometries were modeled
in FEMM, a freely available magnetics finite element solver.
[7] Both models were prescribed to have a characteristic mesh
size of 0.5 mm in the air region around the coil. The continuum
coil also has a characteristic mesh size of 0.5mm, resulting
in a total mesh size of 2761 more or less evenly distributed
nodes. However, the model with explicit windings requires
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Fig. 5. AC Resistance of an air-cored coil.

a much finer mesh inside the wires in order to adequately
model skin and proximity effects at higher frequencies. The
interior of each turn is meshed with a characteristic lengthof
0.1mm, and the surface of each turn is meshed at a density of
0.044mm, giving adequate meshing for frequencies through
1 MHz (where the skin depth is approximately 0.066mm).
The model requires a total of 38,365 nodes for the 1 mm
wire diameter. Approximately the same number of nodes are
required for explicit representation of the coil with the other
wire diameters under consideration.

Complex permeability defined by (46) is applied in simula-
tions modeling the wound region as a continuum. The voltage
drop across the winding is obtained by (26), where (47) is used
as the conductivity of the wound region. The coil’s impedance
is then obtained by dividing the voltage drop by the coil
current.

For models that represent each wire explicitly, a∂v/∂θ
for each wire in the coil so that the specified coil current
is realized in each turn. Voltage is obtained by summing the
voltage gradients from all turns and multiplying2π radians.
Again, this voltage drop is divided by the coil current to obtain
impedance.

For each of the three wire diameters, solutions were per-
formed over a range of frequencies between 1 kHz and 1 MHz.
The AC resistance of the coil versus frequency as wound with
various wire diameters is shown in Figure 5, and the reactance
is shown in Figure 6. These figures demonstrate that AC
resistance predicted by the continuum model agrees to within
about 1% of the of the more expensive explicit model up to
the point at which the skin depth equals the wire radius (skin
depth is 0.5 mm in room temperature copper at 17.5kHz . At
1 MHz, the continuum model over-predicts the AC resistance
by 24.1%, 13.1%, and 8.6% for the 0.8mm, 1mm, and 1.1mm
diameter wires, respectively. The reactance is also a good
match, with the continuum model accurately representing the
exclusion of flux from the coil region at higher frequencies.

VII. C ONCLUSION

This paper employed an equivalent foil representation of
proximity and skin effect losses to calculate approximate
closed-form expressions for complex permeability (eq. (46))
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Fig. 6. Reactance of an air-cored coil.

and conductivity (eq. (47)). These continuum material proper-
ties can be used in place of explict representation of individual
turns in a round wire winding with hexagonal packing with
great economy.

An example problem demonstrated that the continuum
model can provide good agreement with explicit model up to
the frequency at which the skin depth equals the wire radius.
At higher frequencies, the AC impedance of the continuum
coils has the right qualitative behavior but increased error in
AC resistance is incurred, especially for coils with a lowerfill
factor.
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