Continuum Representation of Wound Coills via an
Equivalent Foil Approach

David Meeker

Abstract— Continuum methods for representing skin and prox-
imity effects in round-wire windings have been previously pe-
sented in the literature. Although the economy of these metids
is well-established, the existing approaches require prighinary
numerical field computations to determine the equivalent mger-
ial properties of the wound region. The present work derives
approximate but closed-form expressions for the equivalen
conductivity and permeability of regions filled with hexagmally
packed round wire, allowing proximity and skin effects to be A
included with ease in 2D AC field computations. 0

Index Terms— Eddy currents, finite element methods, proxim-
ity effect, skin effect.
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. INTRODUCTION Fig. 1. Conducting foil solution domain

ONTINUUM representations of skin/proximity effect
losses in wound coils have been previously reported in

the literature. Moreaet al. [1] described the use of a complex-‘equivalent” foil winding that admits an analytical solomi for
valued magnetic permeability for the continuum repregarta proximity losses. The present work also uses an equivabént f
of transformer windings with rectangular conductors, pres approach. Equivalent foil dimensions are selected to niéeh
ing closed-form expressions for frequency-dependent eernbC losses and low frequency proximity losses of hexagonally
ability. Podoltse\et al. [2] consider windings with round wires packed round wires.
assuming that the turns are packed in a square grid. Nurherica
solutions for complex-valued permeability for differerisfare
presented graphically. Since turns naturally tend to siack
a hexagonal pattern, accommodation of hexagonal packing is
desirable. Gyselinck and Dular [3] present a numerical ogtth  To establish an equivalent foil representation of a winding
for obtaining equivalent properties of a round-wire wirglinthe equivalent foil itself must first be analyzed.For thelybemn
with hexagonal packing. These continuum representatiénsad a conducting foil, consider the domain pictured in Fidilre
wound coils allow proximity and skin effect losses to bé&lux travels vertically up the foil such that the problem is
represented in numerical models without explicitly moaigli effectively one-dimensional. The vector potential, inside
each turn in the coil. the foil is described by the differential equation [4]:

However, continuum skin/proximinty modeling techniques o

X ) . d°A

are not yet widely used in practice. Although the economy —
of this approach has been well-established in the litegatur dz
the existing approach for hexagonally packed round wirtscoivherev represents the voltage gradient applied to the foil and
require preliminary numerical field computations for théedle w, oy, andy, are the frequency in rad/s, foil conductivity in
mination of equivalent material properties. The requiratoé  S/m, the permeability of free space in H/m, ahd /—1. For
these additional analyses makes the method less attraEtiee this problem, the boundary at= —b is fixed atA, and the
present work derives approximate but closed-form expsassi boundary at: = b is fixed atA;.
for the equivalent conductivity and permeability of region For the purposes of this analysis, the applied voltage gradi
filled with hexagonally packed round wire, allowing proxtyni ent, Vv, will be broken into two parts:
and skin effects to be included in 2D AC field computations
with trivial additional effort. Vo = Vv + Vv, @)

This work derives the continuum properties for Woun%herevw andVu; represent the portions of the voltage drop

regions using a develo_pment similar to_the widely use&e to resistive and inductive effects, respectively.
Dowell's method of proximity loss calculation [5]. Dowedl’ Since the problem is a linear one, the problem can be

method replaces a winding composed of round wires with %%composed into three simpler problems. The results t@thes
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MA 02451.[dmeeker@toster-miller.com solution for the foil. The three problems are:

II. CONTINUUM REPRESENTATION OF ASINGLE FoOIL
CONDUCTOR

= Jwo oA + 0f e VU (2)
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1) Impedance to flux with no net flux linkage to the foilundetermined. From [4], the current flowing at each point in

This problem satisfies the differential equation:
A — A

Azy = jworn,A subject to A(+b) = £
SC)

2) Resistive losses (and some reactive power due to

local field) in the foil. This problem satisfies:

Aze = 05 (JwpoA + 1oVo,) subject to A(+b) =0

4)
3) Flux linkage to the ambient magnetic field. This problem
satisfies:
Apw = 07 (jwpoA + 16Vvs); A(£b) = AL+ Ao
> )

A. Impedance to External Flux

The solution to[{B), representing the impedance of the fq

to externally driven flux, is:
A <A1 — AO) sinh (\/jwcrfuon%)
2 sinh /jwo g 11,02

(6)

the foil is:

cosh (y/jwopob?%)
cosh \/jwo 1002
(11)

J = —(05Vv, + jwogA) = 0V,

Hfe average current density over foil is then:

-V,

Jroit =

tanh /jwo rpeb?
o
I jwoo ruat?

- <M>
Mo

The voltage drop can then be written in terms of the average
current density as:

V’UT = - ( Ko ) Jfoil
Ofifd

\t DC, the voltage gradient is strictly real-valued. As the
equency increases, permeabilify;q in the denominator
increases the required voltage and makes the voltage cemple
valued. The imaginary part of the voltage can be interpreted
as reactive power due to flux flowing locally in the foil.

(12)

(13)

The value of eq.[16) is that it can be used to deduce a singie | jnkage to Ambient Flux

frequency-dependent permeability for the foil, includitig

effects of the eddy currents. The foil might then be replaced .
by a single (albeit complex-valued) permeability with edd
currents, rather than a somewhat complicated eddy curre

problem.

The linkage of the foil to “ambient flux”i(e. flux due to
neighboring foils, interactions with surrounding struetietc.)
re described by[15). This equation has a trivial solution:

Ag + Aq

A= (14)

The field intensity required to drive the flux in the foil is 2

the field intensity at the outer edge of the foil:
1 dA

H(b) = _Eﬂ(b)
- (A() — Al) \/jwaf,uon (7)
B 2p10b ) tanh \/jwo b2
The average flux in the foil is:
b —
Baug:_l A 7_@:M (8)

by dv b 2b

The frequency dependent permeability of the fpi}{) is then:

_ Bayy  tanhy/jwoypueb? )
Hrd= H(b) Ho Vijwo g pob?

B. Resistance and Local Reactive Power

However, there is more subtlety than first meets the eye. The
utility of this equation is that it can be used to determine

the portion of the voltage gradient necessary to support the
ambient flux(that is, the applied voltage gradient that must
be present to have no net current in this sub-problem). The
induced current is:

J=—0¢(Vv; +jwA) =0 (15)

so that the voltage gradient that results in zero current is:

Vo; = —jw (#)

The subtlety lies in the fact that when this equation is event
ally evaluated to obtain terminal voltage, the boundaryesl
(Ap and A;) will not be explicitly available. It is therefore
desirable to write the boundary values in terms of the awerag
value of the continuum approximation of over the foil.

(16)

The second problem, edl (4), is used to derive the resisth€noting the continuum representation of vector potermisl
losses of the wire and a small additional contribution to thd. it will be assumed that is generally described by the

winding’s reactive power. The solution td (4) is:

_ iV, 1 cosh (y/jwo s pob?%)
w cosh /jwo ¢ b2

A(z)

(10)

differential equation:

1
- —V2A = Jpoi
Hfd

To identify the boundary conditions in terms df (IT4) must

(17)

This solution can be used to determine a relationship betwese solved subject to the same boundary conditions as the foil
the average current density in the coil and the voltage thag. A(—b) = Ay, A(b) = A;. The solution to[(II7)is:

is required to drive it. Eq.[{10) prescribet as a function 1 T
of the applied voltage gradient, but the actual current itens A = Eﬂfdjfoile (1 - (—)) +
flowing in the foil as a result of the voltage gradient is as yet

Ao+ Ay

R

b 2 b



Averaging.A over the width of the foil and yields: \/\
1 Ag+ A

Aavg = gﬂf’deoile + === —; - (19) aiff  foil |ain
Solving for(Ap+A1)/2, the boundary conditions dfl(5) yields: 2 A

Ao+ A 1

% - Aavg - gﬂfdeoile (20) Ao &»
The voltage drop due to the ambient field in terms4fthe i
continuum representation of vector potential, is obtaibgd B
substituting [[2D) into[{16): /\/

. 1.
Vv, = —]W-Aavg + g_]&)ﬂfdeoile (21)
Fig. 2. Gapped conducting foil solution domain
D. Equivalence of Continuum and Exact Representations

In the previous section, it was assumed tha (17), in whi¢kg. (Z3) can be represented more succinctly as:
the effects of eddy currents are implicitly represented avia

J oil .
complex-valued permeability, is a substitute fdr (1), vehtre - Vo= Uf—d + jwAauvg (24)
eddy currents explicitly represented. However, the edeinee !
of these two forms is not trivially evident. This sectiowhere ) 1
explores the basis upon which the substitution[af (17) Edr (1 Opg = — Zjwpgqb? (25)
was made. opfa 3

Solutions to [II7) and({1) are equivalent in terms of theifhe second bracketed term iE25) has been neglected in
influence on the magnetic field external to the foil. At angrevious works. Its function could be thought of as subinact
boundaries in a magnetic problem, the field must have norng@yme reactive power so that the energy stored locally in foil
continuity of flux density and tangential continuity of fieldis not account for twicei.e. in the integration of4 over the
intensity. In the 1D problem at hand, the continuity comaif fojl and in the analytical solution for the field in the foil.
are enforce by continuity of vector potentidl (analogous  There are multiple abutting foils connected in series toenak
to enforcing continuity of normal flux) and continuity df 3 winding, the voltage required to drive the entire array of

in the z-direction. A differential equation describing a regiortonductors can then be obtained by integrating the V0|tage
could be considered, from the point of view of an observgfadient over the entire region:

outside that region, as prescribing a relationship betviken

boundary conditions at the edges of the region of interest. n [ff (ij+ U—LJfoil)dV

This relationship is embodied by an equation that represent vV = j{ (=Vv-dl) = T ds

two boundary conditions in terms of two other boundary

Conditions and a forcing term due to currents in the regicthere’fL denotes the number of conductors in the W|nd|ng It

of interest. In the particular case of a conducting foil, thean be noted that for this 1-D problem, the stored energy,

field intensity at the boundaries might be represented/as losses, etc., as derived from the continuum representation

and HO atr = b7 -b respectiveiy_ By direct Computation’ jtare eXaCtIy the same as that which would be Computed by

can be verified that both the continuum solutidi] (18), arf®Pnsidering the eddy currents explicitly.

solution for the potential distribution within a foil obtead

by summing [(B), [T0), and_(114) satisfy the following matrix [1l. GAPPEDFOIL CONDUCTORS

equation_ relating the boundary conditions on opposite ®dge a5 described in [5], proximity and skin effect losses are

of the foil: often approximated for the purposes of transformer desjgn b
Hy 1 -1 1 Ag -1 equivalent gapped foil conductors. In this section, theaife

{ H, } " pigq i 1 -1 i { A }+{ 1 }Jf‘)“b permeability and conductivity of a gapped foil conductol wi

(22) be derived, building upon the results of the single foil ga&.
From the point of view of the effect on the external field, thén the subsequent section, foil properties will be chosen to
continuum representation is equivalent to the exact represyield an analytical but approximate solution for the bulk

(26)

tation. properties of round wire coil with hexagonal packing.
The geometry to be considered for the gapped foil conductor
E. Combined Solution for a Eoil Conductor is pictured in Figur&l2. The problem is simplified by replagin

. ) ) ) the foil by its equivalent continuum representation, asveer
Finally, a combined expression for the voltage gradient cgithe previous section. As with the plain foil, the problesn i
be written by substitutind(13) anfi{21) ind (2). broken into three sub-problems

Ho 1 2, 1) Boundary conditionsA = =+ (A4; — Ap) /2 with no
Orlifa ot = giwital joub +jwAawy  (23) applied foil current;

- Vv =



2) Boundary conditionsA = 0 with constant current
density Ji.,, applied evenly over the width of the
continuum-representation foil;

3) Boundary conditionsA = +(A; + Ag) /2 with no
applied foil current.

A. Impedance to External Flux

The goal of the first sub-problem is merely to determine the
effective permeability of the composite region. It can béedo
that the region consists of flux path of permeability; and
width 2b driven in parallel with an air flux path of widtBe.

In this case, the effective permeability can be written ddoyn
inspection:

O =0

"\
_
2
_
"\

b
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b Fig. 3. Hexagonally packed winding and equivalent foil getmyn
€
Heff = (—b+ E) ffd + (—b+ 6) o (27)

B. Resistance and Local Reactive Power C. Linkage to Ambient Flux

- . . . . The third sub-problem again involves the linkage to the
tal::eeC%tr)]lt?.cg'vfogffé?'fhzuft;f{);?]tgeg fo:gb(.j:;zrnlllgftﬁerzs@?nbient flux. The development is identical that Bfl1(21); the
roblem witlhljéllf 0 boundarl condiltions or; the' outer ed uegnly difference is that the foil pitch i% + ¢ for the present
Ef the air. the fi;d in the foi?/is described by: 9%ase instead of for the foil alone. The resulting “inductive”

voltage gradient is therefore:

1 d?A
— = Tt 28 , L.

Hfd dx? Joil ( ) V’Ui = _]WAavg + g]w,ueffjavg (b + 6)2 (37)
and in the air by:

_1d’A N (20) D- Combined voltage gradient

fro da? Egs. [36) and{3d7) can be combined to yield the total voltage
with continuity in A and H at the air/foil interface. The gradient:
solution is: 1 V- Javg +jwA (38)
A= Jron <_ufd (0* — 2?) + uobe> for |z| <b  (30) eff
2 where
A= poJoib(b—x+e¢) for b<z <b+e (32) 1
. . . Oeff = B . .

To compute the “resistive” portion of the voltage gradidm t Uf“ljfd (b%) + jwpoe(b+ €) — $jwpess (b+ €)?
averageA over the foil is needed. The average of dq.l (30) (39)
over the width of the foil is: The effective properties of the gapped foil region for usarin

1 equivalent continuum model are permeability; ; prescribed

Afoit = 37 foith (ppab + 3poc) (32) by (22) and conductivity described by {39).
The voltage gradient can then be computed as:
J it V. EQUIVALENT FOIL FOR AN HEXAGONALLY PACKED
- Vo, = O‘_—fd + jwAgoil (33) WINDING

Now that p.¢s and o.¢s have been derived for a foil
winding, the parameters in these expressions can be chosen
so that losses in a winding consisting of round wires are

— Vo, = (& _kuobe) Jtoil (34) approximated as closely as possible by the foil windingedas
OHfd formulas. Although the foil winding’s effective propersie
However, for the purposes of homogenizing the region, the derived from the analysis of a 1D geometry, 6
applied current density must be represented as an average gymmetry of the hexagonally packing implies that the effect
the entire region, not just the foil. In this case, the averagpermeability derived from a 1D analysis can be employed in
current,.J,,,4, can be defined in terms of the foil current, assubsequently 2D calculations.
; ( b ) ; The domain of interest for a hexagonally packed winding is
avg — foil

Substituting foro ¢, from (23) and forAy,; from (32) and
simplifying yields:

b+e
so that theVu, part of the voltage drop is:

(35) pictured in Figur&€. To choose an equivalent foil, conditgti
o, foil width & and foil pitchb+e must be chosen so that results
the closely match the round wire losses are obtained over
VY, = (< Ho > <ﬂ) —|—jwuoe(b+e)) Jusg (36) some.f_requency range.Ar.easonabIe way to choose thgge three
oflfd b guantities would be to satisfy the following three condigo
The second term in[{B6) essentially represents the energyl) DC losses in the winding match DC losses in the
stored locally in the air around the foil. equivalent foil;




2) Low-frequency proximity losses (in the low-frequencyvhere parametert, representing the fill factor of the equivalent
limit at which the reaction field from the induced proxfoil geometry, is defined as
imity loss currents can be ignored) are identical for the
winding and equivalent foil; ~[2Vv3

3) The pitch of the columns in the hexagonal winding is €=
the same. as the foil pitch in the equivalent V\{Ind.lng. and non-dimensional frequeneyis defined as:

The properties of the hexagonally packed winding are

represented by conductivity), copper fill fraction (fill), and O (\/gwcwauoR2>

fill (48)

™

wire radius ). It is first useful to write distance from the ) (49)

center of the wire to the nearest point on its corresponding N . .
hexagonal cell (denoted d%) in terms of the winding's fill and the frequency-dependent permeability of a single equiv

factor: alent foil, ¢4, written in terms of the non-dimensional fre-
i guency is:
W=R,|—— 40 .
Vvt 4o ., ftanh G0 50
From Figure[B, it is clear that the column pitch of the Vil

hexagonal winding Is/31V, so that: V. ADDITIONAL LOCAL ENERGY STORAGE INDC

PROBLEMS
V3 V3m
TW — \/ ST R (41) As shown above, the effective conductivity of a wound

o ) region is complex-valued. The imaginary part of the conduc-
As can be seen in FigurEl(3), the height of each hexagogglty implies extra reactive power due to magnetic field eggye
cell in each column of cells is equal V. For the purposes stored locally around the wires in a way which does not come
of an equivalent foil, losses for a sectief’ in length can be jyto evidence by inspecting only the countinuum field solati
compared to the losses for a single strand of wire. For resistThjs extra magnetic field energy also exists in DC problems
losses, the condition is straightforward: and should be included in volume integrations of magnetic
TR2  4bW field energy,i.e. to obtain proper values of inductance that

o ofon (42) include the local effects of the wire’s packing on storedrgpe

(b+¢) =

Similar to the usual case with a real-valued conductivity,

For the purposes of low-frequency proximity loss compuhe peak power density?, is defined as:
tation, it is assumed that the foil and wire are both subject t

a uniform flux densityB directed along the centerline of the P = 1 | avg|?
foil/lwire. In both cases, the induced current is proporion Teff .
to the distance from the centerline of the wire or foil and _ Re(oesp) —jIm(oesy) 1 |2 (51)
. .. . . - av
proportional to conductivity. Integrating and equatingdes |oeff|2 J
si\(/j(;sa} single strand and over a singlg” x 2b foil segment where it is assumed that all quantities are represented as

amplitudes (rather than RMS) for the purposes of this aimlys

I s o\ p2 (2,3 2\ o The real part ofP denotes resistive losses. The imaginary part
(g”R ow >B - (gb Wofouw™ | B 43) ofp corresponds to reactive power:

The foil conductivity and foil half-width that satisfy[{¥2) Im(oeyy) )
and [ZB) are: Im(P) = — (W | Javg ] (52)
\/g eff
b= TR (44)  For some inductancel,, with currenti flowing through it,

the peak reactive power per cycledd. |i|? and the energy
omR fill = corresponding to that instant in time #sL|i|?. If the peak
9= 2\3W - 2\/30 (45) power is known, the corresponding stored energy can be
] obtained simply by dividing by2w. Energy density can be
Equations[[Z7) and{B9) can then be used as the effectiygained from reactive power density in the same way:
permeability and conductivity of the hexagonally packed, co

where the equivalent foil winding’s parameters are defined . 1 (Im(oeyry) 2
Energy Density= —— | ———== | |Jav 53
by @), [23), and[ds) 9 Py a5 gy ) el 9
The effective material properties of the wound region can ) N ' o
be rearranged into a more convenient non-dimensional form'0 obtain the additional stored energy at DC, the limit

as: of (&3) must be taken as — 0. To compute this limit, first
ferr = (1= C)to + clisa (46) ;grc;zltc:]er:tg.e Taylor series expansion of the inverse[of (47)
ofill
oy — 1 1 1-c
Oeff =~ — (47) ~—— 0 =S 54
o 4 02950 — L0 O oorr ot T\ ol (54)
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Fig. 5. AC Resistance of an air-cored coil.

Fig. 4. Example air-cored coil with the windings represdn¢gplicitly and ] o ) )
as a continuum region at 50kHz. a much finer mesh inside the wires in order to adequately

model skin and proximity effects at higher frequencies. The
interior of each turn is meshed with a characteristic lerafth
Following from [23), the stored energy density is: 0.1mm, and the surface of each turn is meshed at a density of
1—ec ) 0.044mm, giving adequate meshing for frequencies through
) |Javg] (55) 1 MHz (where the skin depth is approximately 0.066mm).
o . The model requires a total of 38,365 nodes for the 1 mm
Substituting for2 from (9) and for fill from [2B), eq.(35) \ire diameter. Approximately the same number of nodes are
simplifies to: required for explicit representation of the coil with théet
3 , (1—c 0 wire diameters under consideration.
Energy Density= 202 < 2 ) | Jawvg| (56)  Complex permeability defined bZT46) is applied in simula-
tions modeling the wound region as a continuum. The voltage
VI. EXAMPLE CALCULATION drop across the winding is obtained byl(26), whéré (47) isluse

as the conductivity of the wound region. The coil’'s impedanc

The range of validity of the continuum representation €38 then obtained by dividing the voltage drop by the coil
be explored by the comparison of finite element solutions wif, | ..+

a continuum and explicit models of a wound coil. Here, the

cofill

Energy Density= 2£ (
w

{ﬁ)ltage gradients from all turns and multiplyirgr radians.

a semicir_cular region With.‘?‘ radiu§ of 20 mm. A ﬁrSt'ord_eAgain, this voltage drop is divided by the coil current toaiht
asymptotic boundary condition [6] is used on the outer md'ﬂ*npedance

of the region to economically approximate an open OUterFor each of the three wire diameters, solutions were per-

poundary. For the explicitly represent(_ad coil, the t(_)p rrtuen formed over a range of frequencies between 1 kHz and 1 MHz.
IS (I:zgntere[g ag_ T 5‘6&; f: 5.4.thReferr|tng tc; the r(]jlwensmns.rhe AC resistance of the coil versus frequency as wound with
N FigureLs, distanc rom the center ot eac eXagona{/arious wire diameters is shown in Figilile 5, and the reaetanc

cell to the center of one of the cell's sides is 0.6mm. TI'F shown in Figurdd6. These figures demonstrate that AC

gglll\/(I: g/n&sts of d1'14 :;Jrns tpf C?pper W]:tg Oa Cc&ngtictwltylzo esistance predicted by the continuum model agrees torwithi
m wound n afternating fayers of 15 an UMS. "Qlhout 19% of the of the more expensive explicit model up to
the continuum model, the coil is region is chosen as the tight

bounding b f1h " dwith a 1 di ; -~the point at which the skin depth equals the wire radius (skin
ounding box of the coll as wound with a 1mm dlameter wirgy pth is 0.5 mm in room temperature copper at 17.5kHz . At
an inner radius of 5.1mm, an outer radius of 17.5315mm, a

Hz, the continuum model over-predicts the AC resistance

an da)l"i' length of LLO mm. e d'art'?ete:;z 8“5&8?{"6 410;“%4.1%, 13.1%, and 8.6% for the 0.8mm, 1mm, and 1.1mm
and 1..mm are considered, representing 53.U5%, 61.947, eter wires, respectively. The reactance is also a good

0 : : ; : .
73.85% copper fills of the continuum coil region, respedfive atch, with the continuum model accurately representireg th

: Both the explicit anq continuum g_eom_et.rles were modelee clusion of flux from the coil region at higher frequencies.
in FEMM, a freely available magnetics finite element solver.

[7] Both models were prescribed to have a characteristidimes
size of 0.5 mm in the air region around the coil. The continuum
coil also has a characteristic mesh size of 0.5mm, resultingThis paper employed an equivalent foil representation of
in a total mesh size of 2761 more or less evenly distributgaoximity and skin effect losses to calculate approximate
nodes. However, the model with explicit windings requireslosed-form expressions for complex permeability (€gl))46

VIl. CONCLUSION
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Fig. 6. Reactance of an air-cored coil.

and conductivity (eq[{47)). These continuum material prop
ties can be used in place of explict representation of iddizi

turns in a round wire winding with hexagonal packing with

great economy.

An example problem demonstrated that the continuum
model can provide good agreement with explicit model up to
the frequency at which the skin depth equals the wire radius.
At higher frequencies, the AC impedance of the continuum

coils has the right qualitative behavior but increasedreimo
AC resistance is incurred, especially for coils with a lovikr
factor.
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