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Braking force in a Single-Sided Halbach Array Brake 
 
Introduction 
 
Consider the case where we have a stationary Halbach array.  Each magnet in the array has a 
square l by l cross-section.  Assume that each magnet has a coercivity of Hc and a unit relative  
permeability. A plate moves below the array at a constant speed of v.  The plate’s thickness is 
2w, and the distance from the surface of the Halbach array to the center of the plate is denoted as 
g.  The plate also has a unit relative permeability in addition to a conductivity of σ . 
 
Field inside the plate 
 
To get simple expressions, one can assume that the plate is actually a current sheet.  This yields 
pretty good results as long as the plate is thin relative to the pole pitch.  Assume that this current 
sheet lies along the line y = 0. 
 
The differential form of Ampere’s loop law is JH =×∇ .  If we integrate this expression across 
the plate’s thickness, the result is 
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where K is the current in the current sheet.  The definition of vector potential is .  In 
combination with the constitutive law 

AB ×∇=
HB oµ= , we could write the cross-plate condition as: 
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This condition on the derivatives, in combination with the continuity of A, must be obeyed as the 
field crosses the plate. 
 
For our purposes, it is useful to consider just the fundamental of the field produced by the 
magnets.  In this case, we can represent vector potential A as: 
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where β is the wavenumber of the Halbach array: 
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We could then split the field into two parts: 
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where as is the field due to the Halbach array in the absence of the plate, and ar is the reaction 
field from the currents in the plate. 
 
The current in the plate is due to the motion of the plate in the field of the Halbach array. The 
current density is: 
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If we integrate the current across the plate and re-write in terms of a, we get: 
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Outside the plate, the equation that the magnetic field must then obey is: 
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which can be solve by inspection to yield a 
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The interface condition can then be used to determine the unknown constant, ao: 
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For ease of notation, we can define the “modified slip” as: 
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and we can also note that the time constant of the plate then must be: 
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Now, we can solve for ao as a function of as: 
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and the total a inside the plate as: 
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The above represents the field as a simple function of the plate’s velocity and the “source” field 
produced by the halbach array magnets. 
 
Forces on the plate 
 
The best way to get force in this case is to integrate the BJ ×  force across the plate to get the 
pressure: 
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The flux passing normal to the plate is: 
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and the current flowing in the plate is: 
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Using these expressions to evaluate the pressure yields: 
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The total force would then be obtained by multiplying by the surface area of the Halbach array. 
 
Right away, this form give some interesting results.  By inspection, one can see that the braking 
pressure is optimized at .  At the peak of the curve, the velocity is 1=ms
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and the peak pressure is: 
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Field from the Halbach array 
 
The last part that remains to be determined is as, the field component at the plate’s center due to 
the Halbach array in free space.  If one considers just the fundamental of the array, the array can 
be represented as a sinusoidally distributed current density of amplitude Jh sandwiched between 
two current sheets of strength Kh on the bottom of the array and –Kh on the top of the array.  
Creating Jh and Kh just consists of evaluating Fourier series coefficients to obtain: 
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One then needs to solve: 
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where u[y] and ][yδ  are the unit step and Dirac delta functions respectively.  The implication 
here is that the array is located a distance of g above the plate’s center. 
 
Skipping over the solution of this ODE, the field at the center of the plate is: 
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Example 
 
As a giggle test, one can compare to a finite element run.  In this case, the magnets have Hc = 106 
A/m, l = 0.75”, g=0.1875”, w=0.0625”, σ =25 MS/m.  The plate is traveling past at 4.572 m/s, 
which corresponds to a frequency of 120 Hz and a sm of 0.456.  A section 1.5” long in the travel 
direction has been modeled. 
 



The finite element solution yields an average force of 4327 N/m; the “simple” analytical formula 
predicts a force of 4191 N/m. 
 
Conclusions 
 
By assuming that the plate can be approximated as current sheet, some fairly simple expressions 
for braking pressure versus speed can be derived for a single-sided brake.   In these formulas, the 
magnet geometry is clearly in evidence, and simple expressions are available for the peak 
braking force and the velocity at which it occurs.  The answer shows a good agreement to a finite 
element analysis for a rather arbitrary test case (~3% difference between analytical solution and 
FEA). 
 
This solution does not include skin effects.  Plates that are thick compared to the wavelength are 
also not addressed.  It would be straightforward to extend the solution to encompass these cases 
as well, with the expense of some loss of simplicity.  A double-sided brake could be 
accommodated more easily (just scales force by a factor of 4). 
 
It should also be noted that the above is a purely 2D solution.  In the “real world,” the eddy 
currents have to “turn around” in at the edges of the plate—this creates some extra resistance and 
inductance.  Most of the effect can be captured by a relatively simple correction to the plate’s 
conductivity that accounts for the increased resistance. 
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