
Since all the materials in your problem are linear, there must be a linear relationship 
between the voltage and currents.  We could write out this relationship as: 
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In this relationship, the Z matrix represents the self and coupled impedances of the 
transformer; i1 and i2 represent the currents through the top and bottom windings, 
respectively, and v1 and v2 represent the voltages across the top and bottom windings, 
respectively. 
 
Now, FEMM can only model situations in which the currents are known.  The voltages 
that drive these currents can then be inferred.  In the case of a transformer, the situation is 
reversed:  we know the voltage drop across primary, and in this particular case of a 
shorted secondary, we know the voltage across the load attached to the secondary (i.e. 
zero).   
 
Since we know voltages but not currents, we can’t a priori make a single model that 
models the short-circuit operation of the transformer.  Instead, we make a series of 
models to identify the impedances Z1, Z2, and Z3.  We can then say what currents are 
associated with a particular set of applied voltage by inverting the impedance matrix: 
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These currents could then be applied to the model to get a model of the transformer under 
short-circuit conditions.  However, once the impedance matrix is obtained, there may be 
no need for further analyses—losses and couplings can be inferred from the impedance 
matrix. 
 
To get the impedance parameters, first make a model with a circuit for each turn in the 
primary, where each turn carries 1 Amp.  For the each turn of the secondary, make a 
circuit such that each turn carries 0 Amps.  This configuration is reflected in the attached 
Case1.fem.  Analyze the model and run the post-processor.  To get the Z1 term, one 
simply sums up the impedances that are reported for each turn of winding 1 that are 
reported the View|Circuit Props.  One could also automate this via the short Lua script: 
 

ztim=0 
ztre=0 
for i=1,7,1 do 
v1,v2,v3,v4,zre,zim=getcircuitproperties("c"..i) 
ztre=ztre+zre 
ztim=ztim+zim 
end 
print(ztre,ztim) 



 
which can be pasted into the Lua console window.  The script prints the summed 
impedances.  The result of the run is: 
 

Z1 = 0 0.02716250196921174 + j1.252897988452293 Ω 
 

Looking at the matrix representation, one can see that the voltage across the turns of the 
second coil can be summed to yield the Z2 cross-coupling term.  A script that computes 
this coupling is: 
 

ztim=0 
ztre=0 
for i=1,4,1 do 
    v1,v2,v3,v4=getcircuitproperties("CC"..i) 
    ztre=ztre+v3 
    ztim=ztim+v4 
end 
print(ztre,ztim) 
 

The result of this calculation is: 
 

V = -0.0001958265023914235-j0.07370789290762653 Volts/rad 
Note that this result is in volts per radian, so we need to multiply by 2*Pi to get back to 
volts. The sign convention used internally is such that the Z2 impedance is: 
 

Z2 =  0.00123041 + j 0.46312 Ω 
 
A second simulation can then be run with all of the turns in the second coil carrying 1 
Amp and all of the turns in the first coil carrying 0 Amps.  This is the attached 
Case2.fem. 
 

ztim=0 
ztre=0 
for i=1,4,1 do 
    v1,v2,v3,v4,zre,zim=getcircuitproperties("CC"..i) 
    ztre=ztre+zre 
    ztim=ztim+zim 
end 
print(ztre,ztim) 
 

The result of the calculation is: 
 

Z3 = 0.01199329261144129 + j 0.4294433540007501 
 

You could then calculate some stuff like coupling coefficients….  You could decompose 
the impedance matrix as: 
 



 Z = jωL + R 
 
where L and R are real-valued matrices of apparent inductance and resistance.  Note that 
R has nonzero cross-coupling terms due to the proximity effects.  For this case, ω= 
50000π  rad/sec. The respective matrices are: 
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For example, the coupling is: 
 

2,21,1

1,22,1

LL

LL
k =  = 0.631669 

 
Note that these results apply only at the one frequency at which the problem was 
evaluated.  The apparent inductance and resistance will vary with frequency. 
 
 


