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Abstract

This work presents approximate but closed-form expressions for “effective” complex-
valued magnetic permeability and electric conductivity that represent the effects
of proximity and skin effect losses in wound coil with hexagonally packed wires.
Previous work is extended by providing improved accuracy versus finite element
results for effective permeability and by providing an expression for effective con-
ductivity, which was previously neglected. These material properties can then
be used in 2D/axisymmetric finite element models in which the coil is modeled
as a coarsely meshed, homogeneous region (i.e. removing the need for modeling
each turn in the coil).
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1. Introduction

Continuum representations of skin/proximity effect losses in wound coils
suitable for inclusion in 2D/axisymmetric finite element analyses have been
previously reported in the literature. Moreau et al. [1] described the use of
a complex-valued magnetic permeability for the continuum representation of
transformer windings with rectangular conductors, presenting closed-form ex-
pressions for frequency-dependent permeability. Podoltsev et al. [2] consider
windings with round wires assuming that the turns are packed in a square grid.
Numerical solutions for complex-valued permeability for different fills are pre-
sented graphically. Gyselinck and Dular [3] present a numerical method for
obtaining effective properties of a round-wire winding with hexagonal packing.
Xi Nan and Sullivan [4] and Rossmanith et al. [5] present analytical formulas
for proximity effect losses in hexagonal windings. Parameters in these analytical
formulas are then tuned to match finite element proximity effect results. An
extension of the model to a continuum representation of square-packed Litz wire
bundles is also considered in [4]. However, formulas for skin effects are neglected
in both works.
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Previously, continuum representations were primarily used for the purposes
of proximity effect computation during transformer design. However, the pur-
pose of the present development is to obtain formulas that can be ubiquitously
and automatically applied to wound regions in AC magnetic finite element anal-
yses. The formulas are meant to be used on general wound regions like air-cored
coils, slotless motors, magnetic bearings, and so on. One implication of the de-
sire for a generally applicable representation is the focus on hexagonal packing.
Although it is practically difficult to obtain a perfect hexagonal packing, wires
in these devices tend to lay down in fashion that approaches a hexagonal fill.
Therefore, the present work focuses exclusively on hexagonally packed windings.
A second implication for the desire for a generally applicable formula is that the
fit for both the real and imaginary parts of the permeability must be excellent.
Some previous works (e.g. [4]) have focused on fitting to the imaginary part of
the complex permeability because it is closely related to losses for a given field
intensity. However, an accurate estimate of the real portion of the permeability
is also needed to ensure that the right field intensity is computed in the winding
in finite element domains with more general arrangements.

Similar to previous works, this work provides an analytical form for effective
permeability with parameters fit to finite element results. However, the present
work extends the previous efforts in several ways:

• The present work provides an expression for effective conductivity that is
a good fit to finite element results. Expressions for effective conductivity
(related to skin effect) are neglected in previous works with hexagonal
packing.

• The combination of the analytical form and selected parameters for ef-
fective permeability (related to proximity effect) presented in the present
work provides a more accurate fit to finite element results than previously
published results.

• The parameters in functional forms from previous works are revisited using
a broader set of finite element results and a different cost function for
parameter selection. “Re-tuned” parameters for the previous works are
presented that improve the performance of those approaches.

2. Finite Element Calculations of Effective Properties

Previous work considered a purely analytical expression for proximity and
skin effect losses based on an equivalent foil approach.[6] The foil geometry is
an essentially 1-D problem in which it is straightforward to split the problem in
to separate analyses that address proximity effect, skin effect, and flux linkage.
In case of square wires, (e.g as addressed in [7]), it is straightforward to pick
boundary conditions that address the skin and proximity effect problems for a
column of wires. However, for a hexagonally packed column of wires, as shown
in Figure 1, there is no obvious edge to which the boundary conditions can be
applied. Instead, a 2-D domain must be defined that can be broken down into
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Figure 1: Hexagonally packed winding and equivalent foil geometry.

analogous proximity and skin effect problems. That geometry, along with the
proximity and skin effect sub-problems is shown in Figure 2.

2.1. Skin Effect Computation

Like in [7], to obtain a result relevant to skin effect computation, a domain
with odd symmetry from between columns of wires in needed. For the case of foil
conductors like in [6], this condition can be imposed by explicitly applying vector
potential A = 0 in on a line bisecting the gap between conductors. However,
the same boundary condition could have been implicitly imposed by an infinite
array of foils carrying alternating current directions. Since there is no one line
on which to apply A = 0 in the hexagonal case, the geometry of Figure 2b
applies an approach similar to method of images, creating a geometry with
alternating rows of wire carrying alternating current directions. The condition
A = 0 is defined only at only point in the center of the domain, and dA/dn = 0
boundary conditions are defined on all edges.

This solution is used to obtain ρr, a frequency-dependent resistivity of the
wire in the finite element solution domain. A commonly available finite element
post-processing result is the complex impedance, Z, of the series-connected
circuit used to drive the currents in the problem domain. Some care must be
taken, depending upon exactly how the problem is step up. If one circuit is
defined to drive both the positive and negative current, the length of the circuit
is twice the length of the solution in the into-the-page direction, but the cross-
section area of the circuit is only 1/2 of the solution domain. Therefore, ρr can
be obtained from the FEA-derived impedance via:

ρr =

(√
3W 2

4L

)

Z (1)
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Figure 2: Solution domain for hexagonal proximity and skin effect computation.
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2.2. Proximity Effect Computation

Similarly, as in [7], to obtain a result relevant to proximity effect computa-
tion, a domain with even symmetry is required. For the case of foil conductors,
like in [6], it is straightforward to pick Dirichlet boundary condition the lines at
the center of the gaps between foils that enforces even symmetry (and assures
that no net current is carried by the foil). However, in the case of hexagonally
packed conductors, there isn’t one line between columns of wires along which a
Dirichlet boundary condition can be applied.

However, it can be noted that the line that goes down the center of each
row of wires is an isocline of A in the proximity effect problem. To ease the
definition of boundary conditions in the hexagonally packed case, it is better to
take advantage of this line of constant A, drawing the domain as pictured in
Figure 2c. It is convenient to define the left edge of the domain as A = 0. The
right side of the domain is then set to an arbitrary potential, Ao.

The proximity problem is meant to address the case in which there is no net
current in any of the wire, just circulating currents that are conserved within
the cross-section of each wire. The voltage gradient on each conductor due to
the applied boundary conditions is:

∆v = −jωActr (2)

where Actr is the potential at the the center of the conductor in question.
To force the wires to carry a zero net current, a source current density of

∆v = jωσActr (3)

must be imposed to cancel out the induced current, i.e. to model an open-
circuit condition.

This domain is used to determine an effective permeability including prox-
imity effects. Two common FEA post-processing calculations are time averaged
stored energy per unit volume (here represented as w), and time averaged losses
(p), both taken over the entire solution domain. If the domain were, instead,
composed of a homogeneous material, the stored energy and loss densities would
be:

w =
1

4

µr

|µ|2
B̄2 (4)

p = −ω

2

µi

|µ|2
B̄2 (5)

where
µeff = µr + jµi (6)

Using (4) and (5), it is straightforward to obtain the µeff of an equivalent
homogeneous material:

µeff =
ωB̄2

2jp+ 4ωw
(7)
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3. Approximating Function

Although the techniques in Section 2 would alone be a suitable method for
determining the equivalent properties for any region, it is desirable to have a
closed-form approximating function that can represent the results obtained from
a large set of finite element runs. To aid in forming an approximation function,
it is useful to present the non-dimension frequency, Ω:

Ω =

(

σµoR
2

2

)

ω (8)

This non-dimensionalization is selected so that Ω = 1 coinciding with the fre-
quency at which the skin depth is the same as the wire radius, R.

To represent the numerical results, it is assumed that forms similar to the
expressions derived from an equivalent foil approach in [6] will be sufficient. The
forms that are proposed are:

µeff = (1− c2)µo + c2µo

tanh
√
jc1Ω√

jc1Ω
(9)

ρr =

(

1

σ fill

)( √
jc3Ω

tanh
√
jc3Ω

+ jc4Ω

)

(10)

The effective properties of the gapped foil region for use in an equivalent contin-
uum model are permeability µeff prescribed by (9) and conductivity described
by (11):

σeff =
1

ρr − 1

3
jωµeff (b+ ǫ)

2
(11)

where c1, c2, c3 and c4 are to-be-determined functions of copper fill factor (de-
noted as “fill”). The (b+ ǫ) term represents 1/2 the wire row pitch, as pictured
in Figure 1.

To define some of the unknown parameters, it is desirable to select c1 through
c2 to enforce low-frequency asymptotic proximity losses exactly (e.g. as had
been previously done in [7]). In the low frequency limit where the reaction field
of the induced currents can be neglected, the proximity losses can be written
exactly as (see Appendix A):

µeff |Ω→0 = µo

(

1− 1

2
jfillΩ

)

(12)

The Taylor series of (9) about Ω = 0 is:

µeff ≈ µo

(

1− 1

3
jc1c2Ω

)

(13)

The asymptotic losses are satisfied exactly if:

c2 =
3

2

fill

c1
(14)
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Figure 3: Relationship of Skin Effect Parameters at Low Fill Factor.

Similarly, c3 through c4 can be selected to enforce the asymptotic behavior
of ρr for small fill factors. The Taylor expansion of (10) about Ω = 0 is:

ρr ≈ 1

σ fill

(

1 +
j

3
(c3 + 3c4)Ω

)

(15)

Unlike the proximity effect problem, a closed-form asymptotic solution is not
clear. The quantity ρr was evaluated at Ω = 0.01 over a range of fills from 0.001
to 0.1 at 31 points evenly distributed on a log scale. The evaluations of ρr can
then be processed as implied by (10) to obtain finite element estimates of the
quantity 1

3
c3 + c4:

1

3
c3 + c4 = fill Im(

ρrσ

Ω
) (16)

As shown in Figure 3, the finite element results are well fit by a curve that varies
with the log of fill:

1

3
c3 + c4 = 0.425218− log (fill)

2
(17)

Now, expressions for c1 and c3 as a function of fill must be determined.
It was assumed that both functions could be suitably approximated as cubic
polynomials in fill. Both ρr and µeff were evaluated at a large number of
points. The functions were evaluated at fill factors between 0.1 and 0.9 at
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increments of 0.1 and at 51 frequency points evenly distributed on a log scale
between Ω = 0.01 and Ω = 1000, 459 data points in all. Problems were solved
with meshes containing on the order of 10,000 elements with the freely available
FEMM finite element program [9].

Since µeff and ρr have a fairly wide dynamic range, the normalized RMS
error on between the analytical formula and the FEA results is a reasonable
metric for comparing goodness of fit. For some complex-valued data set, z, and
some approximation, ẑ, the normalized RMS error is defined as:

Normalized RMS Error =

[

n
∑

1

1

n

∣

∣

∣

∣

zn − ẑn
zn

∣

∣

∣

∣

2
]

1

2

(18)

The parameters of the polynomials describing c1 and c3 were selected to mini-
mize this cost function. For the µeff/µo, as plotted in Figure 4, the RMS error
is 1.23%. For the 1/(σρr) quantity plotted in Figure 5, the RMS error is 2.35%.
The forms of c1 and c2 that minimize (18) are:

c1 = −0.0714373 fill3 + 0.0684158 fill2 + 0.687385 fill + 0.775607 (19)

c3 = −0.215718 fill3 + 0.722321 fill2 − 0.00860551 fill + 0.882464 (20)

The finite element results are plotted along with the approximating function in
Figure 4 for µeff and in Figure 5 for ρr.

4. Comparisons to Previous Results

First, the performance of the Rossmanith formula [5] was evaluated. It was
found to have be an excellent match to finite element data at relatively low
frequency, in the region where Ω < 10. However, for higher values of Ω, the fit
diverges from the finite element results. However, the parameters in [5] appear
to be fit from a relatively small number of runs and over a smaller range of Ω
than considered in the present work. To provide a fair comparison of results,
the parameters in the model were re-fit using the the same finite element data
set and cost function (18) used to obtain the parameters for the prsent model.
The curve fit permeability equation obtained in is plotted in Figure 6 along
with the finite element results used for curve fitting in this work. With the re-
tuned parameters, the match to finite element data is substantially improved,
providing a relatively in amplitude to finite element data over a wide range of
frequencies. Agreement of the imaginary portion of the complex permeability
shows some erratic behavior at higher frequencies.

v = 1− 1.56856k+ 0.602779k2

wz =

[

1.30413 +
7.05284

z2
− 0.305487z2

z2 + 297.931(1 + i)

]−1

(21)
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Figure 4: Proximity finite element results and approximating function for fill from 0.1 to 0.9
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Figure 5: Skin effect finite element results and approximating function for fill from 0.1 to 0.9

Finite element results were then compared with the form and fitting pa-
rameters in [4]. It was found that the form for the imaginary part of complex
permeability in [4] must be multiplied by a factor of 2 to adjust for an apparent
Peak vs. RMS scaling error. With the fitting parameters as presented in [4],
the fit of the imaginary part of the permeability in [4] to finite element results
is good at low frequencies and good at high frequencies, especially for low fills.
However, there are errors in the imaginary part of permeability the range of
10%-25% in the transition region between the low and high frequency regimes.
With the original parameters, the fit to the amplitude of the permeability is
poor (greater than 30% RMS error).

However, much better performance can be obtained with the [4] formulation
by retuning the parameters. In the original work, the parameters were fit to the
imaginary portion of permeability only. The use of (18) tends to find a good
fit to both real and imaginary parts of the permeability. Optimized re-tuned
parameters, using the nomenclature of [4], are given in (22). Plots of the fit are
shown in Figure 7.

khex = 0.81419− 0.0851379λ

bhex = 0.250995+ 0.29522 exp(−6.31359λ) (22)

whex = 0.113135
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Figure 6: Re-tuned Rossmanith [5] complex permeability vs. finite element results.
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Figure 7: Re-tuned [4] complex permeability vs. finite element results.
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Model [4] Orig [4] Re-tune [5] [5] Re-tune Present

|µ| 21.2% 1.41% 8.72% 1.62% 1.23%
Im[µ] 6.15% 4.23% 32.1% 4.70% 5.13%

Table 1: Normalized error comparison of various fitting models.

The various models can be quantitatively compared via the normalized RMS
error used as a parameter-fitting cost function in (18). The normalized RMS
error was computed as directly in (18) and, for reference purposes, considering
only the imaginary part of the complex permeability. The results are shown
in Table 4. The approach of the present work has a better overall agreement
to finite element-derived complex permeability than previously published ap-
proaches. Performance is about the same as the re-tuned version both alterna-
tive formulas.

5. Conclusions

Equations (9) and (10) are closed-form approximations for equivalent con-
tinuum material properties for a region filled with hexagonally packed wires.
The expressions are a significantly better match to finite element results than
equations presented in previous works. However, part of the improvement over
previous work is due to the parameters selected for the functional forms used in
previous works. When the functional forms from previous works are re-tuned
using the present data set and cost function, the gains over previously presented
forms is more modest.

However, fitting of the imaginary part of the complex permeability is still
not perfect at high frequency for very high fill factor for either the presently
presented form or for previous works. Creation of a more elaborate model with
better fit in these regions could be the subject of future work.
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Appendix A. Low Frequency Proximity Losses

Consider an isolated wire of radius R and conductivity σ as frequency ω → 0
with no net current. The wire is immersed a time-varying magnetic field of
amplitude B and frequency ω. The eddy currents induced in the wire are
governed by Faraday’s law:

1

σ
∇× J = −jωB (A.1)

Referring to Figure A.8, if the frequency low enough the the reaction field from
the induced currents in the wire is negligible, the eddy currents in the wire can
be obtained by directly integrating (A.1):

J = −jωσBx (A.2)
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The total proximity effect loss per unit length can be obtained by integrating
the resistive losses over the wire’s cross-section, assuming a Peak rather than
an RMS scaling for all relevant quantities:

loss =
1

2σ

∫ R

−R

∫

√
R2−x2

−
√
R−x2

|J |2dydx

=
π

8
σω2B2R4 (A.3)

=
π

8
σ(µoωH)2R4 (A.4)

The complete area of the cell associated with the wire can be defined in terms
of the wire’s and fill factor as:

acell =
πR2

fill
(A.5)

so that the average loss per unit volume, p, can be written as:

p =
σfill

8
(µoωRH)2 (A.6)

Recalling (5) and writing it in terms of H , rather than B:

p = −ω

2
µiH

2 (A.7)

Setting (A.6) equal to (A.7) and solving for µi yields:

µi = − 1

4
fillωσµ2

oR
2 = − 1

2
µofillΩ (A.8)

The low frequency effective permeability of the region, which accounts for prox-
imity effect losses in the wire, is then:

µeff ≈ µo

(

1− 1

2
jfillΩ

)

(A.9)
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