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Abstract—Improvised Asymptotic Boundary Conditions are
a sparse but approximate method of solving open boundary
problems. Since this method approximates unbounded space
as series of isotropic shells, it can be readily implemented in
virtually any finite element solver without the need for additional
code. Previous work addressed application of this technique to
magnetic problems described with a vector potential formulation.
The present work extends the method to electrostatics and related
scalar potential formulations.

I. INTRODUCTION

ASYMPTOTIC boundary conditions are an established
method of addressing “open boundary” problems in elec-

trostatics [1]. This method applies boundary conditions that
emulate the impedance of an unbounded space for low-order
harmonics at a nearby computational boundary. Previously,
this method has been applied to 2D [2] and axisymmetric [3]
electrostatic problems. Previous works only considered first-
and second-order boundary conditions, and code modifications
are required to implement the asymptotic boundary conditions.

Improvised asymptotic boundary conditions (IABCs) work
on the same principle as other realizations of asymptotic
boundary conditions, by reproducing the impedance of an
unbounded region for low-order harmonics. However, IABCs
can be implemented in an ad-hoc fashion, without requiring
code changes. These boundary conditions are realized by
constructing a series of concentric rings with appropriately
specified material properties about a circular computational
boundary.

Previous work on IABCs concentrated on magnetostatic
problems posed with a vector potential formulation and results
were limited to third order [4]. The present work extends the
formulation to scalar potential problems with the particular
motivation of solving unbounded 2D and axisymmetric elec-
trostatic problems. The results presented in this work allow
the realization of IABCs of up to tenth order for scalar
potential problems. Several examples demonstrate the utility
and performance of the method.

II. PROBLEM DEFINITION

At low frequency, the electric field is described by a subset
of Maxwell’s equations[5]:

∇ ·D = ρe (1)

∇×E = 0 (2)
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D = ϵE (3)

where E is the electric field intensity; D is the electric flux
density; ρe is electric charge density and ϵ is the electric
permittivity. The electric field can be defined in terms of
electric potential, V , as:

E = −∇V (4)

allowing (1) and (2) to be captured as the second-order partial
differential equation:

−∇ · ϵ∇V = ρe (5)

This work considers solution of (5) in the “far field” region
where ρe = 0 and ϵ = ϵo, the permittivity of free space. In
the far field region, (5) reduces to the Laplace equation:

−ϵo∇2V = 0 (6)

Although electrostatics is the primary motivation for the
present work, the results of this work apply equally well
to other problem domains that are described by equations
of identical form to (1)-(6): scalar potential magnetostatics,
inviscid fluid flow, steady-state heat flow, and steady-state
groundwater flow. [5]

If ρ is defined to be the distance from a fixed origin, the
open boundary problem can be thought of as the solution to (6)
in a bounded circular region with a radius ρ = Ro in the
case where the boundary location R0 → ∞. For magnetic
problems posed in terms of vector potential, A, it is usually
sufficient to use open boundary conditions that define A = 0 at
Ro. Problems are typically defined as a collection of currents
acting on regions filled with various magnetic properties, and it
is natural the currents be defined in such a way that the currents
are conserved in the near-field domain. In the far field, the
potential behaves like a dipole (or a collection of dipoles), and
the magnetic energy converges to a constant value as R0 → ∞.
However, magnetic potential is usually not defined in the near
field; the A = 0 boundary condition at infinity is needed to
define a problem with a unique solution.

For electrostatic problems, the situation is more complicated
due to the presence of isolated charges in the electrostatic
formulation. For 2D problems, the solution for V due to a
point charge (i.e. the infinite space Green’s function [8] ) varies
with the log(ρ) rather than converging to a constant voltage
as ρ → ∞. When there is a net charge in the near field, a
homogeneous Dirichlet (V = 0) boundary condition at Ro

stores charges on the boundary surface at Ro and the energy
stored in the electrostatic field increases without bound as Ro

approaches infinity.
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Charge density on a surface is proportional to the normal
voltage gradient at the surface. A homogeneous Neumann
boundary condition, dV/dρ = 0, applied at Ro, assures that no
charge can spuriously be stored “at infinity”, forcing all charge
to be conserved in the near field region. In the case where the
charge can’t be forced to be conserved locally (i.e. when a
net charge is explicitly specified in the near field region with
no near-field reference voltage), the problem is ill-posed per
the Fredholm Alternative [6], and the homogeneous Neumann
boundary case will not have a solution for any Ro. Since the
Neumann boundary condition forces charge to be conserved
locally leading to convergent stored energy and disallows
solutions for ill-posed problems, a Neumann boundary should
be employed as the “default” boundary condition type for 2D
electrostatic open boundary problems. A Dirichlet boundary
should only be used for 2D problems in the case in which a
configuration of charges that sums to zero is defined a priori,
but the potential is nowhere fixed in the near field region. In
that case, it is appropriate to use a homogeneous Dirichlet
condition, V=0, as ρ → ∞ to uniquely define the solution,
similar to the situation in magnetic potential problems.

For axisymmetric cases, however, the solution for the volt-
age due to a net charge does converge to zero as ρ → ∞.
The stored energy can be bounded in the case where there is
charged stored “at infinity”. For some axisymmetric problems,
a Dirichlet boundary condition is needed that stores charge at
infinity–for example, the computation of the capacitance of an
isolated sphere. Alternatively, a Neumann boundary condition
can be applied for problems in which it is desired that charges
should sum to zero locally–for example, computing the force
between two separated spheres [7].

Since the choice of a Dirichlet (grounded at infinity) or
Neumann (insulated at infinity) boundary condition depends
upon the particulars of the problem at hand, both cases will
be considered in the subsequent development for both 2D and
axisymmetric cases.

III. 2D IMPROVISED ABCS

In polar coordinates, the general 2D solution for (6), assum-
ing no net charge in the near-field, is [2]:

V (ρ, ϕ) =
∞∑

n=1

vn(ϕ)

ρn
(7)

where ρ and ϕ are the radius and angle that define the polar
coordinate system, as shown in Fig. 1. It can be noted that (7)
satisfies both V = 0 and dV/dρ = 0 as ρ → ∞, so (7) can
be used to generate both Neumann- and Dirichlet-type open
boundary approximations. By differentiating (7) with respect
to ρ, a relationship between voltage and its derivative with
respect to ρ can be stated:

∂Vn

∂ρ
= −nVn

ρ
(8)

where Vn represents the vector potential contribution of the
nth harmonic. Eq. (8) can be interpreted as a set of boundary
conditions that the true unbounded solution must satisfy at
ρ = R where R is the radius of a circular artificial com-
putational outer boundary. Asymptotic Boundary Conditions

seek boundary conditions that satisfy (8) for a few low-
order harmonics, assuming that higher-order harmonics have
decayed to insignificance if a suitably large R has been
selected.

Improvised Asymptotic Boundary Conditions (IABCs) are
a method of enforcing the satisfaction of (8) for low-numbered
harmonics. IABCs assume that (8) can be satisfied for the first
N harmonics by creating a circular outer boundary and placing
N addition thin annular regions with isotropic permittivities
ϵ1 . . . ϵN outside the boundary. Either V = 0 or dV/dρ = 0
can be applied on the outer edge of the shells. Applying V = 0
on the outer shell corresponds to a Dirichlet boundary at in-
finity; applying dV/dρ = 0 on the outer shell corresponds to a
Neumann condition at infinity. A representative illustration of
an IABC is shown in Figure 1, which depicts the construction
of a second-order IABC. The following development describes
the process for the computation of ϵ1 . . . ϵN that satisfy (8).
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Fig. 1. Second order 2D planar improvised boundary condition.

The general solution for V inside the mth shell can be
represented in a separation-of-variables form as [8]:

Vm =
∞∑

n=1

un(ρ)vn(ϕ) (9)

where m = 1 . . . N indexes the layers in the boundary region
and

un = cm1(n)ρ
n + cm2(n)ρ

−n (10)

A system of 2N equations can then be written consisting
of:

• One equation that fixes potential at the inner edge of the
boundary region:

u1(R) = 1 (11)

• Two equations for each interface between layers in the
boundary region. These equations represent the continuity
of tangential field intensity and normal flux density,
respectively:

um(R+md) = um+1(R+md) (12)

ϵ1
∂um

∂ρ
(R+md) = ϵ2

∂um+1

∂ρ
(R+md) (13)
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• One equation defining the behavior at the outer edge of
the boundary region. At the outer edge, the potential can
be set to zero, corresponding a homogeneous Dirichlet
condition (V = 0) at infinity:

uN (R+Nd) = 0 (14)

Alternatively, the normal gradient of potential can be set
to zero at the outer edge, corresponding to a homoge-
neous Neumann condition (dV/dr = 0) at infinity.

duN

dr
(R+Nd) = 0 (15)

For a given set of permittivities ϵ1 . . . ϵ2 and layer thickness
d and radius R, eqs. (11)-(15) are a set of linear algebraic
equations that are straightforward to solve for cm1(n) and
cm2(n) for m = 1 . . . N .

However, asymptotic boundary condition (8) applies on the
ρ = R− side of the boundary. To move the boundary condition
into the boundary region, continuity of the normal flux must
be applied to yield:

ϵ0
∂u

∂ρ

∣∣∣∣
ρ=R−

= ϵ1
∂u1

∂ρ

∣∣∣∣
ρ=R+

(16)

Then, N equations can be obtained by substituting (16) into
(8) to each of the N harmonics:

ϵ1
ϵo

∂u1,n

∂ρ
(R) +

nu1,n(R)

R
= 0 for n = 1 . . . N (17)

where u1,n denotes the solution for the nth harmonic in the
first layer of the boundary. The shell permittivities, ϵ1 . . . ϵN
are determined by the selection of permittivities that sat-
isfy (17).

The first-order case has simple solutions for ϵ1, but higher-
order boundary conditions do not have simple analytical forms.
For this paper, the built-in equation solvers in Mathematica
were used to numerically solve (17), with solutions of (11)-
(15) required for each harmonic to evaluate a trial solution
of (17). For the purposes of a numerical solution, the solution
is simplified if non-dimensional boundary layer thickness,
defined as:

δ = d/R (18)

is employed.
The solution to the first-order 2D case with a Dirichlet (V =

0) outer boundary condition is:

ϵ1
ϵ0

=
δ(δ + 2)

δ2 + 2δ + 2
≈ δ (19)

and the solution the the first-order 2D case with a Neumann
(dV/dr = 0) outer boundary condition is:

ϵ1
ϵ0

=
δ2 + 2δ + 2

δ(δ + 2)
≈ 1

δ
(20)

For higher-order cases, solutions over a range of δ are pre-
sented in Table I for a Dirichlet outer boundary and Table III
for a Neumann outer boundary. Asymptotic expressions for
the small δ case are presented as the first row in the table.
The practically useful case of a R/10 total boundary region
thickness are presented in Tables II and IV.

It can be noted that the relative permittivities for the
Neumann case are the reciprocals of the relative permittivities
for the Dirichlet case. The explanation for this relationship
between the Neumann and Dirichlet cases can be seen by
reformulating the far-field problem, eq. (6) in terms of electric
vector potential instead of scalar potential. Denoting electric
vector potential as T, electric flux density is defined in terms
of T as:

D = ∇×T (21)

Applying the constitutive law of (3) and substituting into (2)
gives a vector potential equation for the far field:

−1

ϵ
∇2T = 0 (22)

For the 2D case, the only non-zero element of T is the “out
of the page” component Tz so that (22) reduces to:

−1

ϵ
∇2Tz = 0 (23)

Eq. (23) now has exactly the same form as (6), except that the
reciprocal of permittivity (i.e. elastivity) appears in the place
of permittivity.

If Tz = 0 is applied at an outer boundary, the condition
D · n is at the boundary. This is exactly the same condition
that is enforced by the selection of a dV/dρ = 0 boundary
condition in a scalar potential problem. That is, solving (23)
subject to Tz = 0 at the outer edge is identical to solving (6)
with dV/dρ = 0 at the outer edge. Because of the similarity
of the problems, the relative permittivities that enforce a
Dirichlet boundary condition for a scalar potential formulation
are the same as the relative elastivities that enforce a Dirichlet
boundary condition for the vector potential formulation, ex-
plaining the reciprocal relationship for the permittivities for
the Dirichlet and Neumann cases of the scalar potential IABC
problem.

IV. AXISYMMETRIC IMPROVISED ABCS

In polar coordinates, the general solution for voltage, V , on
an unbounded domain is [3]:

V (ρ, ϕ) =

∞∑
n=0

vn(ϕ)

ρ(n+1)
(24)

for the axisymmetric case, where ρ is the the radial distance
and ϕ is the polar angle in a spherical coordinate system.
Unlike the 2D planar case, the axisymmetric problem has an
n = 0 term corresponding to a net electric charge which must
be considered for the Dirichlet outer boundary case.

By differentiating (7) with respect to ρ, it can be concluded
that:

∂Vn

∂ρ
= − (n+ 1)Vn

ρ
(25)

where Vn represents the vector potential contribution of the
nth harmonic.

For the axisymmetric case, the general solution for V inside
the mth shell is [9]:

Vm =

∞∑
n=0

un(ρ)vn(ϕ) (26)
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TABLE I
HIGHER ORDER 2D SOLUTIONS WITH DIRICHLET OUTER BOUNDARY.

2rd Order 3rd Order 4th Order

δ ϵ1/ϵo ϵ2/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ4/ϵo

δ → 0 1/(3 δ) (2 δ)/3 6δ 6/(10 δ) (6δ)/10 1/(10δ) 3 δ 5/(7δ) (4δ)/7

0.001 333.501 0.000665669 0.00599693 600.896 0.000598504 100.053 0.00299556 716.069 0.000569436

0.0025 133.502 0.00166045 0.0149802 240.89 0.00149069 40.0583 0.00747285 287.493 0.00141619

0.005 66.8382 0.00330864 0.0299163 120.881 0.00296304 20.0666 0.0148952 144.629 0.00280808

0.01 33.5097 0.00656906 0.0596308 60.8614 0.00585428 10.0833 0.0296111 73.1875 0.00552166

0.025 13.5243 0.0160781 0.147067 24.804 0.0141267 4.1329 0.0730927 30.2898 0.0131449

0.05 6.88167 0.0311111 0.284468 12.7124 0.0267313 2.21349 0.145215 15.9343 0.024375

0.1 3.59547 0.0586908 0.514842 6.56045 0.0484269 1.35828 0.293044 8.64352 0.0426822

TABLE II
2D RELATIVE PERMITTIVITIES FOR 0.1R BOUNDARY STACK-UP WITH DIRICHLET OUTER BOUNDARY.

N δ ϵ1/ϵ0 ϵ2/ϵ0 ϵ3/ϵ0 ϵ4/ϵ0 ϵ5/ϵ0 ϵ6/ϵ0 ϵ7/ϵ0 ϵ8/ϵ0 ϵ9/ϵ0 ϵ10/ϵ0

1 1
10

0.0950226

2 1
20

6.88167 0.0311111

3 1
30

0.194197 18.7726 0.0184821

4 1
40

4.1329 0.0730927 30.2898 0.0131449

5 1
50

0.288508 10.8586 0.0458772 41.5572 0.0101984

6 1
60

2.99677 0.11082 17.2721 0.0338143 52.7245 0.00833053

7 1
70

0.377373 7.72003 0.0694494 23.3195 0.0268835 63.8397 0.00704076

8 1
80

2.38424 0.148376 12.3865 0.0515218 29.1926 0.0223527 74.9238 0.00609673

9 1
90

0.459734 5.97251 0.0918638 16.7005 0.0412586 34.9645 0.0191478 85.9879 0.00537587

10 1
100

2.00711 0.186762 9.71645 0.0680432 20.832 0.0345348 40.6719 0.0167565 97.0386 0.00480743

TABLE III
HIGHER ORDER 2D SOLUTIONS WITH NEUMANN OUTER BOUNDARY.

2rd Order 3rd Order 4th Order

δ ϵ1/ϵo ϵ2/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ4/ϵo

δ → 0 3 δ 3/(2 δ) 1/(6δ) (10 δ)/6 10/(6δ) 10δ 1/(3δ) (7δ)/5 7/(4δ)

0.001 0.00299849 1502.25 166.752 0.00166418 1670.83 0.00999467 333.827 0.00139651 1756.12

0.0025 0.0074905 602.245 66.755 0.00415127 670.829 0.0249636 133.818 0.00347834 706.12

0.005 0.0149615 302.239 33.4266 0.00827262 337.491 0.049834 67.1355 0.00691422 356.115

0.01 0.0298421 152.229 16.7699 0.0164308 170.815 0.0991743 33.7712 0.0136635 181.105

0.025 0.0739412 62.1965 6.79961 0.0403162 70.7882 0.241961 13.6813 0.0330144 76.075

0.05 0.145314 32.1429 3.51534 0.0786636 37.4093 0.451776 6.88636 0.0627577 41.0256

0.1 0.278128 17.0384 1.94234 0.152429 20.6497 0.736225 3.41246 0.115694 23.429

TABLE IV
2D RELATIVE PERMITTIVITIES FOR 0.1R BOUNDARY STACK-UP WITH NEUMANN OUTER BOUNDARY.

N δ ϵ1/ϵ0 ϵ2/ϵ0 ϵ3/ϵ0 ϵ4/ϵ0 ϵ5/ϵ0 ϵ6/ϵ0 ϵ7/ϵ0 ϵ8/ϵ0 ϵ9/ϵ0 ϵ10/ϵ0

1 1
10

10.5238

2 1
20

0.145314 32.1429

3 1
30

5.1494 0.053269 54.1064

4 1
40

0.241961 13.6813 0.0330144 76.075

5 1
50

3.46611 0.0920926 21.7973 0.0240632 98.0545

6 1
60

0.333693 9.02367 0.057897 29.5733 0.0189665 120.04

7 1
70

2.6499 0.129533 14.399 0.0428826 37.1975 0.0156642 142.03

8 1
80

0.419421 6.73965 0.0807328 19.4093 0.0342553 44.7374 0.0133469 164.022

9 1
90

2.17517 0.167434 10.8857 0.0598784 24.2374 0.0286004 52.2252 0.0116295 186.016

10 1
100

0.498229 5.35441 0.102918 14.6965 0.0480031 28.9563 0.024587 59.6785 0.0103052 208.011
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where m = 1 . . . N indexes the layers in the boundary region
and

un = cm1(n)ρ
n + cm2(n)ρ

−(n+1) (27)

Eqs. (11)-(15) still apply for determining the cm1 and cm2

constants for a given n, δ, and ϵ1 . . . ϵm. However, because
of the slightly different form of (25) versus (8), the equations
that must be solved to determine the permittivities are:

ϵ1
ϵo

∂V1,n

∂ρ
(R) +

(n+ 1)V1,n(R)

R
= 0 for n = 0 . . . (N − 1)

(28)
Numerical methods similar to those previously described for
the 2D planar case can be used to solve for axisymmetric
IABC permittivities. Again, for the N = 1 case, there are
analytical solutions. For the Dirichlet outer boundary case, the
solution is:

ϵ1
ϵ0

=
δ

1 + δ
≈ δ (29)

For the Neumann outer boundary case, there is no solution
if the n = 0 harmonic is retained. In (28), n = 1 . . . N instead
of starting with zero. For the N = 1 Neumann outer boundary,
the analytical solution is:

ϵ1
ϵ0

=
δ3 + 3δ2 + 3δ + 3

δ (δ2 + 3δ + 3)
≈ 1

δ
(30)

The numerical solutions for permittivity for higher order
axisymmetric IABCs are presented in Tables V and VII. The
permittivities necessary to implement axisymmetric IABCs
with a R/10 total boundary region thickness are presented
in Tables VI and VIII.

For the axisymmetric case, the relative permittivities for
the Neumann case are not the reciprocals of the Dirichlet
case. Again, this result can be understood by appealing to
electric vector potential. Eq. (22) describes the axisymmetric
case as well. However, in the axisymmetric case, the nonzero
element is Tθ, the polar-directed component of electric vector
potential. Similar to axisymmetric magnetic problems [5], the
axisymmetric version of (22) written in terms of a cylindrical
coordinate system defined by radius r and axial position z is:

−1

ϵ

{
∂2Tθ

∂z2
+

∂

∂r

(
1

r

∂rTθ

∂r

)}
= 0 (31)

For comparison, the axisymmetric version of (6) is:

−ϵ

{
∂2V

∂z2
+

1

r

∂

∂r

[
r
∂V

∂r

]}
= 0 (32)

Although a consideration of (31) with a Tθ = 0 boundary
condition would produce the permittivities necessary for the
Neumann boundary scalar potential IABC, (31) and (32) are
fundamentally different operators. In addition, a different set of
harmonics are considered. The n = 0 harmonic is considered
for the Dirichlet version, whereas the lowest order harmonic
for the Neumann case is n = 1. Because the differential
operators and harmonic under consideration are different, the
relative permittivities in the Neumann and Dirichlet cases are
not reciprocals.

V. SCALAR POTENTIAL OPEN BOUNDARY EXAMPLES

A. 2D Example
A good 2D open boundary example is the determination the

per-unit-length capacitance of round parallel wires of different
diameter. A specific example that appears in both [10] and [11]
assumes wire radii of 2 cm and 4 cm with a center-to-center
separation of 14 cm. For this case, a capacitance of 18.01 pF/m
is expected from the analytical solution given in [11]. In both
works, a potentials of 1V and -0.661875V are assumed for the
small and large wires, respectively. This choice of potentials
enforces the conservation of charge on the two conductors
when V = 0 at infinity. However, selection of these voltages
requires knowledge of the unbounded solution–these voltages
could not be picked a priori. Instead, the present version of
the example will specify 1V and 0V on the the small and large
wires, respectively, in combination with a Neumann-type outer
boundary. Like [10], the present example assumes an interior
solution region with a radius of 13.4 cm located 2 cm from
the large conductor.

The FEMM [12] finite element solver was used in this
example. A 3rd order Neumann IABC was selected to approx-
imate an open region, using the relative permittivities listed in
Table IV. A mesh of first-order triangular elements connecting
13429 node points was used for the solution. The computed
voltage isoclines for the problem are shown in Figure 2. By
integrating over all the elements in the problem (including
those in the boundary shells), the stored energy, W , can be
obtained via the formula:

W =
1

2

∫
D ·E dv (33)

Knowing the stored energy and the voltage difference, ∆V ,
between the wires, the capacitance, C, can be obtained,
through the definition of energy stored in a capacitor:

W =
1

2
C∆V 2 (34)

The computed capacitance for this example is 18.02 pF, a

Fig. 2. Conductor capacitance example with 3rd order Neumann IABCs.

result close to the analytical value.
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TABLE V
HIGHER ORDER AXISYMMETRIC SOLUTIONS WITH DIRICHLET OUTER BOUNDARY.

2rd Order 3rd Order 4th Order

δ ϵ1/ϵo ϵ2/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ4/ϵo

δ → 0 1/(2 δ) δ 5δ 25/(24δ) (5δ)/4 1/(8δ) (23δ)/8 529/(360δ) (23δ)/15

0.001 500.001 0.000997009 0.00499497 1041.67 0.00124378 125.003 0.00286644 1469.45 0.00152266

0.0025 200.003 0.00248139 0.0124683 416.664 0.00308636 50.0075 0.00713468 587.783 0.00376722

0.005 100.005 0.00492611 0.0248715 208.327 0.0060971 25.015 0.014168 293.899 0.00740601

0.01 50.01 0.00970878 0.0494723 104.155 0.0119013 12.5301 0.027955 146.965 0.0143199

0.025 20.0252 0.0232571 0.12146 41.6379 0.0277329 5.07522 0.0674798 58.8308 0.0324964

0.05 10.0505 0.0434961 0.234418 20.7791 0.0497316 2.6494 0.129375 29.4945 0.0560798

0.1 5.10097 0.0771322 0.429378 10.3276 0.0820837 1.5363 0.2472 14.892 0.0872062

TABLE VI
AXISYMMETRIC RELATIVE PERMITTIVITIES FOR 0.1R BOUNDARY STACK-UP WITH DIRICHLET OUTER BOUNDARY.

N δ ϵ1/ϵ0 ϵ2/ϵ0 ϵ3/ϵ0 ϵ4/ϵ0 ϵ5/ϵ0 ϵ6/ϵ0 ϵ7/ϵ0 ϵ8/ϵ0 ϵ9/ϵ0 ϵ10/ϵ0

1 1
10

0.0909091

2 1
20

10.0505 0.0434961

3 1
30

0.16015 31.2123 0.0356179

4 1
40

5.07522 0.0674798 58.8308 0.0324964

5 1
50

0.249837 13.9595 0.0485094 93.6268 0.0308341

6 1
60

3.43867 0.100076 23.6832 0.0405888 135.819 0.0298002

7 1
70

0.338611 9.11831 0.0674884 34.5315 0.0362401 185.492 0.0290973

8 1
80

2.63643 0.134865 15.0974 0.0539561 46.7532 0.0334921 242.665 0.0285874

9 1
90

0.422731 6.77301 0.0874553 21.3014 0.0465142 60.4415 0.0316000 307.363 0.0282013

10 1
100

2.16756 0.171316 11.1989 0.0680376 27.9482 0.0418045 75.638 0.0302177 379.587 0.0278984

TABLE VII
HIGHER ORDER AXISYMMETRIC SOLUTIONS WITH NEUMANN OUTER BOUNDARY.

2rd Order 3rd Order 4th Order

δ ϵ1/ϵo ϵ2/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ1/ϵo ϵ2/ϵo ϵ3/ϵo ϵ4/ϵo

δ → 0 4 δ 2/δ 1/(7δ) (120 δ)/49 20/(7δ) 12δ 6/(19δ) (840δ)/361 70/(19δ)

0.001 0.00399599 2000. 142.86 0.00244168 2857.15 0.0119875 315.784 0.0023153 3684.22

0.0025 0.00997481 800. 57.1495 0.00607731 1142.87 0.029917 126.301 0.00574554 1473.71

0.005 0.0198985 400. 28.5848 0.0120674 571.45 0.0596363 63.1283 0.011352 736.9

0.01 0.0395883 200. 14.3124 0.0238035 285.757 0.118297 31.5204 0.0221718 368.536

0.025 0.0973252 79.9991 5.78115 0.0573497 114.392 0.285096 12.4933 0.051874 147.652

0.05 0.188706 39.9975 2.99018 0.109309 57.3539 0.518654 6.08207 0.0943175 74.2362

0.1 0.351313 19.9973 1.68571 0.205825 28.9765 0.801713 2.88849 0.163862 37.8756

TABLE VIII
AXISYMMETRIC RELATIVE PERMITTIVITIES FOR 0.1R BOUNDARY STACK-UP WITH NEUMANN OUTER BOUNDARY.

N δ ϵ1/ϵ0 ϵ2/ϵ0 ϵ3/ϵ0 ϵ4/ϵ0 ϵ5/ϵ0 ϵ6/ϵ0 ϵ7/ϵ0 ϵ8/ϵ0 ϵ9/ϵ0 ϵ10/ϵ0

1 1
10

10.0634

2 1
20

0.188706 39.9975

3 1
30

4.37479 0.075118 85.8557

4 1
40

0.285096 12.4933 0.051874 147.652

5 1
50

3.06077 0.112378 22.0265 0.0423167 225.43

6 1
60

0.374816 8.17242 0.0740027 33.0192 0.0371234 319.234

7 1
70

2.40892 0.149299 13.8176 0.0582172 45.656 0.0338673 429.046

8 1
80

0.457719 6.15238 0.0951954 19.795 0.0495821 60.002 0.0316392 554.889

9 1
90

2.01871 0.187242 10.323 0.0732287 26.2901 0.0441395 76.0845 0.0300195 696.75

10 1
100

0.533241 4.9312 0.116425 14.5221 0.0612364 33.375 0.0403993 93.9198 0.028790 854.64
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B. 2D Scalar Magnetostatics Example

The as noted in the Introduction, the techniques developed
in this work can be applied to any scalar potential formulation.
As an example of the application of the boundary condition
to other scalar potential problem types, a 2D planar magnetic
problem with a scalar magnetic formulation will be consid-
ered. At low frequency, if permanent magnets are the only
field source, the magnetic field is described by a subset of
Maxwell’s equations:

∇ ·B = 0 (35)

∇×H = 0 (36)

where H is the magnetic field intensity; B is the magnetic
flux density. To include the effects of the permanent magnets,
flux density can be defined as [13]:

B = µH+Br (37)

where µ is the magnetic permeability and Br is the remanence
of the permanent magnet material.

The magnetic field can be defined in terms of magnetic
scalar potential potential, Ω as:

H = −∇Ω (38)

This definition of magnetic potential uniformly satisfies (36).
Substituting (38) and (37) yields:

∇ ·B = −∇ · µ∇Ω+∇ ·Br = 0 (39)

Re-arranging, (39) can be written as:

−∇ · µ∇Ω = ρm (40)

where ρm is the magnetic charge density defined as:

ρm = −∇ ·Br (41)

In the “far field” region, the material is free space (µ = µo, the
permeability of free space) and there is no magnetic material,
so (40) simplifies to:

−µo∇2Ω = 0 (42)

Comparing (40) to (5), the equations have exactly the
same form. The electrostatic and magnetostatic problems are
analogous, with B, H, µ and Ω analogous to D, E, ϵ and
V respectively. The Improvised Asymptotic boundary can
therefore be used by defining the relative permeability of the
circular shells represented the unbounded external region in a
scalar potential magnetic problem to be the same as the relative
permittivity in circular shells of the analogous electrostatic
problem. Since magnetic problems naturally conserve source
charges but do not naturally define potential at any point in
the near field, a Dirichlet outer boundary is appropriate for
this problem.

The goal is to compute the torque on a 15 mm × 5 mm ×
10 mm bar magnet when the magnet is placed in a uniform
external magnetic field. For the purposes of the example,
the magnet is magnetized along the direction of the 15 mm
dimension. The magnet is assumed to be an ideal 42 MGOe
magnet with remanence Br = 1.29615 T and coercivity

Hc = 1, 031, 442 A/m (i.e. straight-line demagnetization curve
with a slope of µo). The external field, Bext, is 0.1 T in
magnitude and directed perpendicular to the magnetization
direction of the magnet.

This problem has a straightforward analytical solution [14]:

τ = m×B (43)

where τ is torque, m is a vector representing the magnet’s
dipole moment. Since the magnet has ideal properties, the
magnitude of dipole moment is Hc times the volume of the
magnet:

m = (0.773581A*m2) ∗ j (44)

A vector indicating the direction and magnitude of the external
field is:

Bext = (0.1T) ∗ i (45)

From (43), the analytically calculated value for torque is:

τ = (−77.36N*mm) ∗ k (46)

where i, j and k represent orthogonal unit vectors.
The first step in creating the numerical solution is to

establish the constant external magnetic field Bext that exists
in the absence of the magnet. As is noted in [15], for an ideal
infinitely long diametrically magnetized cylinder, the flux den-
sity inside the magnet is equal to Br/2. The uniform magnetic
field can therefore be created by drawing a domain with radius
R = 10mm. At R, a magnetic surface charge distribution, ρm,
can be imposed to create the uniform magnetic field:

ρm = −2Bext cosϕ (47)

To establish the proper field, unbounded space can be modeled
by creating an IABC. In this case, a third-order IABC is
selected with δ = 1/30 with the permeabilities for each
layer prescribed by Table II. In this case, the charge specified
by (47) clearly integrates to zero over the domain, and no
fixed potential is defined elsewhere. The Dirichlet IABC is
needed here to obtain a unique solution. The result is an even
magnetic field of Bext in the region of interest. To model
this configuration, the FEMM electrostatics solver was again
employed, interpreting the D, E, and ϵ as their magnetic
analogs, magnetic flux density B, magnetic field intensity H,
and magnetic permeability µ. The resulting field distribution
is pictured in Figure 3.

The lines in Figure 3 are lines of constant magnetic poten-
tial; flux density flows normal to the isoclines, as indicated in
the Figure.

The permanent magnet can then be modeled by placing a
magnetic surface charge distribution of Br on the magnet’s
North pole and −Br at the magnet’s South pole. The resulting
solution, without the superimposed constant Bext field, is
shown as Figure 4. Again, the lines in the Figure indicate
magnetic potential isoclines and flux outside the magnet flows
perpendicular to these lines.

The combined uniform and permanent magnet fields are
shown in Figure 5. A first-order triangular mesh of about 5600
nodes was used to create the solution shown in Figure 5. The
Eggshell Method [16] was used to evaluate Maxwell’s stress
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Fig. 3. Constant magnetic field with 3rd order Dirichlet IABCs.

Fig. 4. Bar magnet and 3rd order Dirichlet IABCs.

tensor over a volume rather than over a surface. The oval of
lines on the Figure encircling the magnet indicate a row of
elements over which the torque was evaluated via the Eggshell
Method. The torque computed by finite element analysis is -
77.33 N*mm, a result close to the analytical calculation.

C. Axisymmetric Example

A simple but illustrative axisymmetric example is a charged,
conductive sphere in unbounded space. For this example, a
Dirichlet-type IABC must be used so that charge on the sphere
is balanced by charges “at infinity”. In this particular case, a
sphere with a voltage of Vo and a radius of Rs = 0.5 m is con-
sidered. For the purposes of this analysis, the computational
domain is truncated to R = 1 m. Various orders of IABCs
are then applied to the problem. The thickness of the layers is
selected so that for the N th order IABC, δ ∗ N = 0.1. With
this selection of thickness, all solutions are solved over the

Fig. 5. Combined constant field / bar magnet solution.

same domain size and have approximately the same number
of elements. The relative permittivities used in the construction
of the IABCs in the example are listed in Table VI.

This example has simple solutions for both voltage as a
function of position and capacitance [14]:

V (ρ, ϕ) = Vo
Rs

ρ
(48)

C = 4πϵ0Rs = 55.6325 pF (49)

In each solution, about 35,000 node points were used. In
the centered position, the finite element solver computes a
capacitance of 55.6335± 0.0001 pF for the IABC cases. The
small difference between the analytical and FEA solutions
is due to discretization error and to approximation of the
circular surfaces of the sphere and boundary by polygons
with sides that span one degree of the surface per side.
If an open boundary scheme is effective, the capacitance
should be insensitive to the position of the sphere within the
computational domain. For example, the left plot in Figure 6
shows the level contours of voltage for a centered sphere with
an artificial outer boundary at ρ = 2R fixed to Vo/2. This
plot represents the analytical solution for the case of a centered
sphere. The right plot in Figure 6 shows a 3rd order improvised
asymptotic boundary condition solution. However, the sphere
has been displaced by 0.8R from the centered position. It can
be observed that the voltage isoclines in the IABC plot still
form circles about the boundary of the sphere and appear to
be unaffected by the position of the sphere within the domain.

Figure 7 shows a plot of change in computed capacitance
versus position for different orders of improvised ABCs. The
first-order IABC is fairly sensitive to position. However, the
higher order IABCs are increasingly insensitive to the position
of the sphere. For the higher-order BCs, the error is dominated
by discretization error over most of the range of travel.
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Fig. 6. Voltage isoclines for a sphere with 3rd order Dirichlet IABCs.
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Fig. 7. Variation in capacitance vs position for different order IABCs.

VI. CONCLUSIONS

This paper has presented an Improvised Asymptotic Bound-
ary Condition method to address electrostatic and related
scalar potential problems. Axisymmetric and 2D examples
demonstrate the use of the formulation for both the “insulated
at infinity” and “grounded at infinity” problem types. Although
the development in this work did not consider 3D problems
directly, the axisymmetric IABCs can be applied in the 3D
case as well, since the spherical shell structure derived for the
axisymmetric case has no particular orientation dependence.

Although this work specifically addresses the scalar poten-
tial, the results have a broader applicability, extending to vector
potential formulations as well. In Sections III and IV, the
duality between scalar potential solutions with a Neumann
and an analogous electric vector potential formulation with
a Dirichlet outer boundary was made. Because the form
of the electrostatic vector potential equations is identical to
the form of magnetic vector potential equations, the relative
permittivities listed in Tables III and IV for the 2D case and
Tables VII and VIII can be used as the relative permeabilities
in 2D and axisymmetric vector potential problems with A = 0

applied at the outer boundary, allowing up to 10th order IABCs
to be implemented in the vector potential case.

Future extensions to this work might explore applications
of IABCs non-circular boundaries or non-static problems.
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