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Improvised Open Boundary Conditions for
Magnetic Finite Elements
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Abstract—Although sparse, exact open boundary methods
exist, the implementation of these methods requires capabilities
that are not present in all finite element solvers. This work de-
scribes methods for the implementation of accurate higher-order
asymptotic boundary conditions for 2D planar, axisymmetric, and
3D magnetostatic problems that can be improvised in virtually
any finite element program.

I. INTRODUCTION

IN many cases, it is desirable to solve magnetostatic or
quasi-static problems on an unbounded domain. If finite

element methods are used, however, the domain must be trun-
cated to a bounded region in order to yield a solvable problem.
The need to approximate the solution of an unbounded domain
via finite elements has led to a variety of “open boundary”
methods [1].

Sparse, exact open boundary methods exist (i.e. the Kelvin
transformation [2] [3] and related mapping methods [4]), and
these methods are widely implemented in commercial solvers.
However these methods rely on features that may not be
present in simpler codes, namely periodic boundary conditions
and material properties that vary as a smooth function of
position.

The Charge Iteration approach [5] is also sparse and exact
and does not require periodic boundary conditions or position-
dependent material properties. However, several iterations are
typically required for the boundary charge distribution to con-
verge, and additional code is required to update the boundary
charges between iteration.

Asymptotic boundary conditions (ABCs) are a sparse but
approximate open boundary method [6] [7]. The magnetic
field could be viewed as a set of harmonics, the magnitude
of each harmonic decaying to zero with increasing distance
from the objects of interest. ABCs rely on the fact that at a
modest distance, higher-order harmonics have mostly decayed,
and the field is dominated by a small number of lower-
order harmonics. ABCs accurately emulate the impedance of
unbounded space for the low-order harmonics at the finite
element domain’s artificial outer boundary. It is assumed that
the negligible error is introduced by not exactly modeling
the boundary impedance for higher-order harmonics. First-
order ABCs specify the parameters of a mixed-type boundary
condition that matches the far-field characteristics of a mag-
netic dipole. While higher-order ABCs that emulate the far-
field behavior of multipoles are possible and provide improved
accuracy, these boundary conditions have been less commonly
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seen because low-level code modifications were presented in
previous works as their method of implementation.

This work presents an “improvised” realization of first-,
second-, and third-order ABCs in 2D, axisymmetric, and 3D
finite element problems. These boundary conditions can be
realized using only basic functionality that exists in virtually
any finite element solver, and no extra iteration is required. The
finite element domains under consideration have a circular or
spherical outer boundary. The open boundary is emulated by
placing thin layers of isotropic material at the outer extents of
the domain. By careful selection of the magnetic permeability
of the layers, ABCs are produced. This method allows for
accurate open-boundary solutions with nearby boundaries. The
proposed method is distinct from static “Perfectly Matched
Layer” approaches described in [8]–[10] because the layers
employed in the proposed approach are isotropic rather than
anisotropic; fine meshing is not a prerequisite in the boundary
layers; and the proposed method is derived from ABCs.
The performance of the proposed method is demonstrated by
example problems.

II. FIRST-ORDER 2D BOUNDARY CONDITION

The simplest improvised boundary condition results from a
first-order ABCs for a 2D planar magnetic problem. In polar
coordinates, the general solution for magnetic vector potential,
A, in which A → 0 at infinity is [6]:

A(ρ, ϕ) =

∞∑
n=1

an(ϕ)

ρn
(1)

where ρ and ϕ are the radius and angle that define the polar
coordinate system. By differentiating (1) with respect to ρ, it
can be concluded that:

∂An

∂ρ
= −nAn

ρ
(2)

where An represents the vector potential contribution of the
nth harmonic.

If a circular boundary is employed, eq. (2) with n = 1 is
a directly applicable open boundary condition. If a particular
code does not support Robin-type boundary conditions, (2) can
be implemented by defining, as shown in Figure 1, an annular
region of thickness d and magnetic permeability µ1 outside the
circular region of interest. The Dirichlet boundary condition
A = 0 is defined on the exterior of the annulus. In the Figure,
x and y refer to the axes in the 2D planar case. The same
figure can be drawn for the axisymmetric case, re-labeling the
axes as r and z.

The permeability of the annulus can be obtained by con-
sidering the analytical solution to the field in the annulus.
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From [11], the general solution for a 2D Laplace equation
in polar coordinates on a bounded circle is:

An = an(ϕ)
(
c1(n)ρ

n + c2(n)ρ
−n

)
(3)

for n = 1 . . .∞, where an(ϕ) is strictly a function of angle
and c1(n) and c2(n) are constants for the nth harmonic that
are determined on the basis of the boundary conditions:

A1(R) = a1(ϕ)/R (4)
A1(R+ d) = 0 (5)

Solving for c1 and c2 and substituting into (3) yields:

A1 =
a1(ϕ)

R

(
R(d− ρ+R)(d+ ρ+R)

ρd(d+ 2R)

)
(6)

By differentiating (6) with respect to ρ, it can be concluded
that at the ρ = R+:

∂A1

∂ρ

∣∣∣∣
ρ=R+

= −
(
δ2 + 2δ + 2

δ(δ + 2)

)
A1

R
(7)

where δ = d/R.
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Fig. 1. First order 2D planar improvised boundary condition.

Eq. (7) has the same form as the desired boundary condi-
tion (2), but (7) applies at the ρ = R+ side of the boundary
between the domain and the annulus. To link the domain of
interest to the annular region at ρ = R, continuity of tangential
field intensity, Ht, is invoked from [12]:

Ht = − 1

µo

∂A1

∂ρ

∣∣∣∣
ρ=R−

= − 1

µ1

∂A1

∂ρ

∣∣∣∣
ρ=R+

(8)

Eq. (8) can then be combined with (7) to write the boundary
condition in terms of quantities at the ρ = R− side of the
interface:

1

µo

∂A1

∂ρ

∣∣∣∣
ρ=R−

= − 1

µ1

(
δ2 + 2δ + 2

δ(δ + 2)

)
A1

R
(9)

The desired ABC, eq. (2), is equal (9) if the permeability of
the annular region is selected to be:

µ1

µo
=

δ2 + 2δ + 2

δ(δ + 2)
(10)

If δ is small, (10) is well-approximated by the first term in its
series expansion:

µ1

µo
≈ 1

δ
(11)

III. FIRST-ORDER AXI/3D BOUNDARY CONDITION

Calculation of a first-order boundary condition for the axisym-
metric case is very similar. The general solution for the far-
field, analogous to (1), is:

A(ρ, ϕ) =
∞∑

n=1

an(ϕ)

ρn+1
(12)

for the axisymmetric case, where ρ is the the radial distance
and ϕ is the polar angle in a spherical coordinate system
and vector potential A has only one the azimuthally-directed
component. By differentiating (12) with respect to ρ, it can be
concluded that the applicable boundary condition is:

∂An

∂ρ
+

An

ρ
= −nAn

ρ
(13)

The general solution in the annulus has the form [12]:

An = an(ϕ)
(
c1(n)ρ

n + c2(n)ρ
−(n+1)

)
(14)

In the axisymmetric case, the tangential portion of the field
intensity at the boundary is [12]:

Ht = − 1

µo

(
∂A

∂ρ
+

A

ρ

)∣∣∣∣
ρ=R−

(15)

Solving for c1 and c2 as before and applying continuity of
Ht leads to:

µ1

µo
=

δ3 + 3δ2 + 3δ + 3

δ (δ2 + 3δ + 3)
(16)

The small δ approximation of (16) is identical to (11).
Since the spherical boundary region has no particular orien-

tation dependence, the solution for the axisymmetric case can
also be used for 3D models.

IV. HIGHER ORDER 2D BOUNDARY CONDITIONS

The first-order ABC realization is easily implemented and
useful in itself. However, accuracy breaks down if the objects
in the domain of interest are not dipole-like: if the objects
aren’t centered in the domain or if significant higher harmonics
are present. To ease these restrictions, higher-order ABCs
are needed. The second-order case will be considered here
in detail, but the same method can be used for higher-order
boundary conditions by adding additional layers to the bound-
ary condition. For example, instead of picking the boundary to
match the behavior of a dipole, the second-order ABC matches
the behavior of both a dipole and a quadrupole. The first-order
ABC was realized using a circular boundary surrounded by a
thin annular region of higher permeability. To satisfy a second-
order ABC, it is assumed that the boundary condition can be
created using a two-layer region, as shown in Figure 2. Each
of the layers has thickness d. The inner layer has permeability
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µ1 and the outer layer has permeability µ2. The task is select
the permeability of the two layers so that the second-order
ABC is realized.
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Fig. 2. Second order 2D planar improvised boundary condition.

Following the general solution from (3), separate solutions,
Ai and Ao are written for the inner and outer layers respec-
tively:

Ai = an(ϕ)
(
c11(n)ρ

n + c21(n)ρ
−n

)
(17)

Ao = an(ϕ)
(
c12(n)ρ

n + c22(n)ρ
−n

)
(18)

A set of four equations can then be formed by applying
continuity of normal flux density and tangential field intensity
at the interface between the two layers:

Ai(R) = an(ϕ)/R (19)
Ai(R+ d) = Ao(R+ d) (20)

1

µ1

∂Ai

∂ρ
(R+ d) =

1

µ2

∂Ao

∂ρ
(R+ d) (21)

Ao(R+ 2d) = 0 (22)

Using a symbolic manipulator, an analytical solution for
c11(n), c21(n), c21(n), and c22(n) was obtained.

Two more equations can then be written to determine the
permeability of each layer by applying (2) for n = 1, 2:

− Ht|n=1 =
1

µ1

∂Ai

∂ρ
(R)

∣∣∣∣
n=1

= −A1(R)/(µoR) (23)

− Ht|n=2 =
1

µ1

∂Ai

∂ρ
(R)

∣∣∣∣
n=2

= −2A2(R)/(µoR) (24)

Eqs. (23) and (24) can again be solved with the aid of
a symbolic manipulator. However, the analytical solution is
not compact nor convenient. Table I lists evaluations of the
analytical solution for a wide range of δ. Taking the limit
as boundary thickness δ → 0 does yield a convenient form,
however. The small δ limit is presented as the first row of
the table. Higher order ABCs can be generated by applying
additional continuity conditions (20) and (21) at the interfaces
between the additional boundary layers. Table I also presents
the analogous results for a third-order ABC.

TABLE I
2ND AND 3RD ORDER 2D SOLUTIONS.

2rd Order 3rd Order

δ µ1/µo µ2/µo µ1/µo µ2/µo µ3/µo

δ → 0 3 δ 3/(2 δ) 1/(6δ) (10 δ)/6 10/(6δ)

0.001 0.00299849 1502.25 166.752 0.00166418 1670.83

0.0025 0.0074905 602.245 66.755 0.00415127 670.829

0.005 0.0149615 302.239 33.4266 0.00827262 337.491

0.01 0.0298421 152.229 16.7699 0.0164308 170.815

0.025 0.0739412 62.1965 6.79961 0.0403162 70.7882

1/30 0.0980491 47.1786 5.1494 0.053269 54.1064

0.05 0.145314 32.1429 3.51534 0.0786636 37.4093

0.1 0.278128 17.0384 1.94234 0.152429 20.6497

0.25 0.580487 7.78137 1.16242 0.358465 10.3724

0.5 0.825804 4.56166 1.02427 0.598073 6.70408

1 0.957203 2.96581 1.002 0.79096 4.76838

TABLE II
2ND AND 3RD ORDER AXISYMMETRIC SOLUTIONS.

2rd Order 3rd Order

δ µ1/µo µ2/µo µ1/µo µ2/µo µ3/µo

δ → 0 4 δ 2/δ 1/(7δ) (120 δ)/49 20/(7δ)

0.001 0.00399599 2000 142.86 0.00244168 2857.15

0.0025 0.00997481 800 57.1495 0.00607731 1142.87

0.005 0.0198985 400 28.5848 0.0120674 571.45

0.01 0.0395883 200 14.3124 0.0238035 285.757

0.025 0.0973252 79.9991 5.78115 0.0573497 114.392

1/30 0.128485 59.9986 4.37479 0.075118 85.8557

0.05 0.188706 39.9975 2.99018 0.109309 57.3539

0.1 0.351313 19.9973 1.68571 0.205825 28.9765

0.25 0.679867 8.05042 1.09427 0.459607 12.2409

0.5 0.894833 4.24456 1.01053 0.709899 6.91301

1 0.981767 2.58334 1.00058 0.872702 4.49224

V. HIGHER ORDER AXI/3D BOUNDARY CONDITIONS

The solution for the second-order axisymmetric case pro-
ceeds very much like the 2D case, substituting the solu-
tion (14) for (3) and substituting the axisymmetric definition
of tangential field intensity (15) for the 2D version in (23)
and (24). Again, a symbolic manipulator is required to solve
the six equations for c11 - c22, µ1, and µ2, and the closed-
form solutions for permeability of the external regions are not
convenient. Second and third-order results are presented for a
wide range of δ in Table II.

VI. OPEN BOUNDARY EXAMPLES

A. Axisymmetric Example

An illustrative example is presented in [3]. A 1000-turn coil
with a 4m outer diameter, a 2m inner diameter, and a 1m
axial length is enclosed in a spherical domain 5m in diameter.
The objective is to find the inductance of the coil, exercising
various open boundary strategies. In this example, the outer
boundary is very close to and strongly affects the inductance
of the coil.
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Fig. 3. Kelvin Transformation and 3rd order ABC solutions.

In [3], the inductance of the coil is only considered at
the center of the spherical domain. Here, to provide a better
comparison between various boundary condition orders, the
inductance is considered over a range of coil positions. The
coil position varies from 0m (centered in the domain) to 1m
(in contact with the outer boundary). An accurate open bound-
ary method should produce very nearly the same inductance
result regardless of the position in the domain. In the present
example, δ was selected so that the total boundary stack-up is
1/10 of the radius of the problem domain.

FEMM [13] was used to simulate 1st through 3rd order
ABCs and Kelvin Transformation BCs for various coil offsets.
The domains were meshed finely enough so that boundary
conditions are the dominant source of error in the example
problems. First order triangular mesh with about 40,000 node
points per solution were employed (with about 80,000 nodes
required for a comparable Kelvin Transformation solution,
since the exterior domain was meshed at the same mesh size
as the interior).

Representative simulation results are shown in Figure 3,
which compares the flux lines computed by applying exact
Kelvin Transformation method to those from an improvised
3rd order ABC. In Figure 3, there is no visual difference in the
solutions, even though the coil is in contact with the boundary.

The simulation results for all simulations are summarized
in Figure 4. In the figure, inductance results are normalized by
the average of the results from simulations with a Kelvin-type
open boundary boundary condition over the range of possible
coil displacements.

Since the Kelvin Transformation is an exact representation
of all space, Figure 4 confirms that solution has essentially no
dependence on position. A small level of error is still present,
however, due to mesh discretization. The “improvised” bound-
ary conditions show better performance as the order of the
boundary condition is increased. The 3rd order boundary per-
forms well across a wide range of displacements; inductance
error with the coil touching the boundary is only 0.1%.
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Fig. 4. Inductance error vs. position for example problem.

TABLE III
LOSSES COMPUTED WITH VARIOUS BOUNDARY CONDITIONS.

BC Type Mesh Nodes Loss (W/m) Energy (J/m)

Kelvin 22342 66.508 0.263366

3rd Order ABC 13642 66.502 0.264313

2nd Order ABC 13007 66.527 0.259605

1st Order ABC 12790 67.074 0.275513

Dirichlet 11489 67.754 0.167933

Neumann 11489 71.941 0.351713

B. 2D Example

A 2D time-harmonic simulation of three-phase busbars is
motivated by [14]. Three solid copper busbars with a 50mm
width and 6mm thickness are located in unbounded space
with a 70mm separation between bars. The busbars have a
conductivity of 58MS/m and carry 60 Hz net currents of
848Apk ∗ {e−2jπ/3, 1, e2jπ/3}.

The busbars are subject to skin and proximity effect eddy
currents which result in increased losses. To accurately predict
both the losses and the stored energy, an open boundary simu-
lation is required. Various boundary conditions were applied to
the problem with a Kelvin Transformation solution used as a
benchmark. For the improvised ABC solutions, δ was selected
so that the total boundary stack-up is 1/10 of the radius of the
problem domain.

Plots of the real and imaginary portions of the flux lines
are shown in Figure 5 and 6 respectively. As demonstrated by
the plots, the real portion of the flux lines are dominated by
the 2nd harmonic, whereas the imaginary portions of the flux
lines are dominated by the 1st harmonic.

Average loss and stored energy for various boundary condi-
tion assumptions are listed in Table III. The 2nd and 3rd order
ABC losses closely match those predicted by the Kelvin BC
case, because these ABCs can reproduce the leading 1X and
2X harmonics exhibited by the problem. The 1st order ABC
is less accurate because it cannot accurately reproduce the 2X
field associated with the real part of the solution. However,
the 1st order ABC still has improved accuracy versus both the
Dirichlet and Neumann conditions.
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Fig. 5. Real flux lines for AC busbar example.

Fig. 6. Imaginary flux lines for AC busbar example.

VII. CONCLUSIONS

Improvised versions of asymptotic boundary conditions for
2D, axisymmetric, and 3D low frequency magnetic problems
have been presented. The proposed method enables accurate
solutions to unbounded problems, and the method can be
employed in an ad-hoc fashion in virtually any finite element
solver.

For many practical cases, the boundary is not drawn so
close as in the present examples. Then, the two-layer, second-

order boundary may be a good compromise between ease
of implementation, domain size, and accuracy. Higher order
ABCs can be used where accuracy approaching that of the
Kelvin Transformation is desired.

Although the example problems presented in this work
contain no magnetically permeable or nonlinear materials,
nothing in the proposed method restricts their use. The
proposed improvised ABCs require no additional operations
nor iterations that might adversely affect the convergence of
solutions with nonlinear materials.

For problems with symmetry, Neumann and/or Dirichlet
conditions can be used in combination with improvised ABCs
to truncate the problem domain e.g. into a half or quarter circle.
Depending upon the specific problem, particular harmonics
may be forced to zero through the choice of the Neumann
and/or Dirichlet boundary conditions. In those cases, improved
accuracy can be obtained by deriving improvised ABCs that
match a different set of harmonics than the ones considered
in the present work. For example, one might desire a second
order ABC to match the 1st and 3rd harmonics rather than the
1st and 2nd in a case where odd symmetry is enforced by the
choice of boundary conditions.

The approach in this paper applied a B · n = 0 boundary
condition on the outer edge of the boundary region. Another
possible derivation would apply H × n = 0 instead. This
alternate derivation might have advantages with alternative
finite element formulations, e.g. edge element formulations or
scalar potential formulations.

Extensions to the current work could present even higher-
order results; apply the formulation to other related areas
like electrostatics/quasistatics or heat conduction; or explore
approaches to “improvised” implementation of a ABCs to non-
circular boundaries.
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