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Abstract

The formulation of current-to-force relationships for magnetic actuators proceeds in a fairly straight-
forward fashion from Maxwell's equations for magnetostatic problems. However, the inverse problem of
determining a set of currents to realize a desired force is less well understood. Historically, this problem has
been relatively neglected because actuators were built in symmetric geometries where a viable solution could
be intuited. Recently, calls for both optimal actuator performance and fault tolerance have necessitated the
formulation of general solution methodologies for magnetic actuators. This dissertation explores such formu-
lations for magnetic actuators whose current-to-force relationships are homogeneous quadratics. Two inverse
strategies are considered:ganeralized bias linearizatioapproach that yields solutions which are easily
implemented and fault-tolerant; andl&ect optimalapproach that realizes low power loss. The examples of
the class of actuators addressed are radial magnetic bearings and the magnetic stereotaxis system.
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Chapter 1

Introduction

1.1 Problem definition

The technology of active magnetic bearings has now been in existence for several decades. Jesse Beams
[BYM46], working at the University of Virginia's Department of Physics in the 1940’s, is usually given
credit as the “Father of Magnetic Bearings.” Since that time, magnetic actuators have been used in a wide
range of applications: for support of rotating shafts (perhaps the most common application), for vibration
isolation, as robotic “wrists”, and for precision pointing applications.

Ultimately, any magnetic actuator is controlled by the variation of voltage across the machine’s
windings. Typically, a two-level approach is taken in specifying the control voltages. The most basic level
is a fast feedback loop that tracks a requested current for the bearing coils, typically via a transconductance
switching amplifier. If the amplifiers are adequately sized and operated at an adequately fast switching rate,
realization of a desired current will take place at a much smaller time scale than the dynamics of the me-
chanical system being acted upon. In this case, it can be assumed that the requested currents are realized
instantaneously. There then remains the higher-level task of specifying requested coil currents so that a de-
sired set of actuator forces can be realized. The present thesis considers the primarily higher-level problem of
the choice appropriate currents; the lower-level control task is discussed at some length bi{M&itiv0]
and Fediganfed93.

Although magnetic bearings have been used for a number of different machines with diverse pur-
poses, nearly all of these devices are composed of pairs of opposed electromagnets, as shownlirLFigure
Each magnet is able to pull the suspended object only towards itself; two opposed magnets are a configuration
that is sufficient to generate a force of arbitrary sign. The typical actuator is built of sets of opposed magnets
with one set for each controlled force direction. For example, a radial bearing used to support a rotating shaft
typically has a configuration as pictured in Figdrg.

For the opposed-pair actuator in Figdr4, the current-to-force relationship is

f =c(i? —i2) (1.1)

wherec is a constant derived from bearing geometry, andndi, are the currents supplied to the top and
bottom coils respectively. For this type of actuator, it is relatively straightforward to invert the relationship
between requested current and resulting force so that any desired force can be realized. There are typically
two ways in which this inversion can be approached:

1. the bias current linearization method;
2. the direct optimization method.

The bias linearization method is perhaps the most common method of realizing desired forces in a
magnetic bearing. Bias linearization is a change of variables in terms of bearing currents. Define vgriables
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Figure 1.1 A pair of opposed electromagnets.

andi; so that

i1 = (lo+ic)/(2/0) 1.2)
i2 = (io - ic)/(Z\/E)
When transformationl(?2) is substituted intoX.1), force in terms of the new variables is
f = ol (1.3)

Any force can then be realized by holding the magnitudg obnstant and varying linearly with the desired
force. In terms of the actual coil currents, the rule for realizing any desired force is then

L= o+ )/2V0) a4
o

2 = (o 1)/(2V0)
o

Bias current linearization has two main advantages. First, it yields a simple formula for currents
to realize any force — this formula is linear in the desired force. Second, the magnitude of the constant (or
biasing) component can be chosen to avoid slew rate limiting. This condition occurs when the requested rate
of variation of currents is faster than can be realized by the actuator’s power amplifiers. Reduced performance
or instability can result. Slew rate limiting is considered in detail in Appeidix

Although bias linearization is easy to implement, it is not optimal in the sense of minimizing the
power needed to produce a given force. An alternative to bias linearization is the direct optimization method.
The method proceeds by recognizing thit is linear in(i3) and (i3). Furthermore, to optimally realize
a force in a power sense and also be physically realizéigleand (i3) should minimize a cost functiod
where

I= (i) +(3) (1.5)
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Rotor

Cross-section

Figure 1.2 Two sets of magnets supporting a rotating shaft.

subject to
iZ >0 (1.6)
iZ > 0 1.7)
. _ f
iH-(3-= = (1.8)

c
This is a classical linear programming problem, and it is easy to see that its solution is

NG

>
i = 0 f=0

(1.9)
B 0 f<O0
o = \/ f/C
Although this solution is power-optimal, it has some undesirable characteristics. Consider that

df o dip . diz

— = 2¢(i1—=+ir— 1.10

ar — 2ol Hgr) (1.10)
Since (.9) yieldsi; =i =0atf =0, (1.10 implies that% and% must be infinite to realize an%{; slew

rate limiting is inevitable. To eliminate this problem, extra constraints can be imposed that force slightly
higher cost solutions with realizable slew rates. One such constraint would be

i%i3 > a? (1.12)

wherea is a constant chosen such that the solution has adequate slew rate properties. The problem can still
be easily solved. The problem is represented graphically in Fig@rd he solution is the intersection of the
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Figure 1.3 Additional constraint for realizable slew rate.

first quadrant part of constraint.(L1) with the required force linel(8):

f 1
-2
= — 4 —/f24+4a82 1.12
! 2 T 2¢ * (1.12)
f 1
2
S N WP
2 2 T 2¢ +

At high forces, 1.12 converges t0X.9). At zero force, the currents are non-zero, guaranteeing adequate
slew rate in this crucial region.

In the past, the direct method was less commonly used because of the difficulty of implementing
a square-root in analog circuitry. However, schemes of this type are becoming increasingly more attractive
now that relatively inexpensive digital controllers are widely available.

Although the above inverse strategies have been used successfully in many devices, these strategies
have certain drawbacks.

e They impose artificial constraints on actuator geometry. The actuator must be designed in an opposing
horse-shoe configuration if the force directions are to be decoupled so that the above methods can be
employed.

e They cannot be used to control more general quadratic actuators in which the force directions are fun-
damentally coupled due to the mission of the device. A prime example of such a device is the Magnetic
Stereotaxis System (MSS). Magnetic stereotaxis is a novel therapeutic methodology for the treatment
of brain tumors and other neurological problems. The fundamental idea of magnetic stereotaxis is that
large electromagnetic coils can be used to guide a small piece of implanted permanent magnetic mate-
rial (a “magnetic seed”) along some arbitrary trajectory through brain tissue. The device is represented
schematically in Figurd.4. Incidental damage is reduced by selecting a path that avoids important
brain structures. Once the seed has been maneuvered into a tumor, the seed is heated inductively
by high-frequency magnetic fields. This heating results in highly localized cell death. By succes-
sive movements and heating, a tumor could be destroyed with little damage to the surrounding tissue
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Figure 1.4 Schematic of multi-coil Magnetic Stereotaxis System.

[Mol91]. Alternatively, the magnetic seed could be used to guide the tip of a catheter. This catheter
would then be used to deliver drug treatments directly to sites inside the BRB'[94] [RGHG9].

e They have little capability of fault-tolerance. If a coil or its associated amplifier fails, symmetry is lost;
the bearing cannot be controlled. The only way to compensate in terms of the previous schemes is with
redundant horse-shoe pait$GS94.

e The above methods do not necessarily guarantee the best possible performance, particularly in the case
of an actuator with multiple degrees of freedom.

All of these above shortcomings can be remedied by a more general formulation of the current-to-force
relations combined with approaches to the inverse solution that do not rely on a design in which all force
directions are physically decoupled.

Instead of a set of decoupled current-to-force relations lik® (a general problem will be consid-
ered of the form

f1 = "Mqi
f, = "Mai

| (1.13)
fk = "M

wheref; is the force in thg'" force directionj is a vector of currents requested in the actuator coilshMnd

is a real symmetric matrix deduced from actuator geometry. The dissertation will proceed with a synopsis
of past work germane to this problem. The formulation of general current-to-force relations will then be
considered. The problem will be formulated for a generic Maxwell-force actuator using magnetic circuit
theory. An identical formulation will also be derived for a Lorentz-force machine, the Magnetic Stereotaxis
System. Generalized bias current linearization and direct optimization approaches to the inverse problem will
be developed without regard to the specific implementation of the solution. Since the definition of “optimal”
is solution implementation-specific, the general solution methods will then be applied to both of the specific
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cases of radial magnetic bearings and the magnetic stereotaxis system to yield optimal solutions for each
implementation.



Chapter 2

Literature Review

Literature relevant to the dissertation might be broken down into five categories:
e Mathematical literature on quadratic forms.

e Examples of bias linearization in Maxwell-force actuators.

Power optimal solutions to the magnetic inverse problem.

The Magnetic Stereotaxis System.

Current realization issues.

2.1 Mathematical literature on quadratic forms

The magnetic inverse problem has received some attention in the mathematical literature under the guise
of “joint numerical range of hermitian matrices” and the “algebraic theory of quadratic forms.” The work
on joint numerical range was not written with any physical problem in mind, but it can be interpreted as
conditions on the ability of an actuator to produce forces in all possible directions. Papers that study various
properties of joint numerical range ai&[91], in which Binding and Li address joint numerical range of more
than two matrices;TU91] on the useful matrix pencil approach to the analysis of the joint numerical range
of two matrices; and Yeung and TsingY{T84], with a number of theoretical results about joint numerical
range. Although the algebraic theory of quadratic forms does not deal directly with the magnetic inverse
problem, a number of crucial tools are developed. These include the Witt index of a matrix, and the concept
of a totally isotropic space, both important to the interpretation of the generalized bias linearization problem.
The two seminal works on the algebraic theory of quadratic forms are by Lam43 and Scharlau$ch69.

2.2 Examples of bias linearization

Bias linearization has been widely mentioned in the literature. Usually, however, pairs of opposed horseshoes
are considered, and bias linearization is therefore only mentioned in passing. Bias linearization is applied
to radial magnetic bearings in works by Imlad¢m[90], Bornstein Bor91], Chen and Darlow€D88, Mat-

sumura and Yoshimot®dY86], Chiba and RahmandR91], Burrows et al. [Bur8g, and Lee and Kim

[LK92]. A more elaborate device also controlled via bias linearization is a 6-degree of freedom actuator
discussed by Allan and KnospAK91]. The machine is composed of three independent actuators, each of
which controls a force and a torque. Through appropriate choice of biasing currents, the force and torque can
be decoupled and controlled independently. One of the uses of generalized bias linearization is the compu-
tation of fault-tolerating current mappings. An alternative approach to fault tolerance is building an actuator
with redundant sets of horseshoes, as is considered by lef@qgLPGS94.
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2.3 Power optimal solutions

The general problem of manipulating an object with an arbitrary array of horseshoe actuators is considered by
Iwaki [lwa9(. Though this work limits itself to horseshoe configurations, it contains necessary and sufficient
conditions for the actuator to provide all desired forces, and it addresses how currents should be picked when
there is a sufficient arrangement of horseshoes. For the specific problem of radial magnetic bearings, a thesis
by Green (5re94 considers a heuristic “flexible quadrant control” scheme for realizing both low power losses
and high load capacity while avoiding slew rate limiting. A number of authors use a square-root function in
order to invert the non-linearity of magnetic bearings in an efficient way. This approach is advocated by
Mouille and Lottin ML92], Lottin, Mouille and PonsartUMP94] and Charara and Card@{93. Maslen

et al. [MANS96] consider the square-root scheme and give a detailed examination of why this scheme is
subject to slew rate limiting.

Although not applied specifically to magnetic bearings, there are several works considering the ap-
plication of continuation (or homotopy) methods to constrained optimization problems that are similar to
the present inverse problem. In these works, the satisfaction of the Kuhn-Tucker necessary conditions for
optimality are tracked from a known starting point to a desired solution. In general, these works deal not
only with equality constraints but inequality constraints as well. Most relevant to the present work is a paper
by Huneaultet al. [aAFVJ83, in which a continuation approach is applied to power system optimization.
Analogous to the present work, the initial condition is a no-load optimum that is trivial to determine. Load
on the power system is then increased while changing the system inputs to maintain optimality. Huneault
elaborates further on the application of continuation methods to power systetd&80] Ponrajah and
Galiana PG99 consider power system optimization and develop on a “elevator predictor-corrector” method
that is particularly suitable for the numerical integrations involved in optimization by continuation. Theoret-
ical aspects of homotopy and continuation algorithms as applied to optimization applications are considered
by Watson and Haftka/)/H89] and Allgower and Georg4G80].

2.4 The Magnetic Stereotaxis System

Another machine that fits into the class addressed by this dissertation is the Magnetic Stereotaxis System. In
[GRB"94], Gillies presents a survey of magnetic manipulators for medical uses, including the MSS. Most

of the work on the MSS has been done at the University of Virginia Department of Physics since the mid-
1980’s by group headed by R. Ritter. The early development of the device, when it consisted of a single
movable coil, is described iQQWL91], [RGHG9] and [Gra9(. This first device was tested successfully in

live dogs. Subsequently, an MSS consisting of 6 fixed coils, the design considered in the present dissertation,
was developed when the single coil machine proved unwieldy for use on humans. A detailed description of
the present machine and a discussion of previous approaches to the magnetic inverse problem in the MSS are
considered in a two-part paper by McNetlal. [MRW95H [ MRW954.

2.5 Current realization issues

The avoidance of slew rate limiting is a pervasive theme in this dissertation. Slew rate and a number of other
practical limitations of magnetic bearings are examined by Mastesd. in [MANS96] and [MHSH89.
Bandwidth limitations arising from eddy currents in magnetic actuators are addressed by Meeker, Maslen
and Noh MMN95], Feeley Fee96, and Zmood ZAK87] for radial bearings, and by Kucera and Ahrens in
[KA95] for axial bearings. Other issues related to the use of switching amplifiers in magnetic bearings are
addressed by FedigaRg¢d93 and in Keith’s doctoral dissertatioiKgi93].



Chapter 3

Current-to-force relation: Maxwell force
actuator

Perhaps the most common type of actuator with a homogeneous quadratic relationship between currents
and forces is the radial magnetic bearing. This actuator is an example of a Maxwell force actuator; that
is, an actuator where the forces are developed by a magnetic field acting upon a piece of high magnetic
permeability material. Assuming negligible eddy current effects and a linear flux density to field intensity
relationship with negligible hysteresis effects, a magnetostatic analysis can be employed to obtain the current-
to-force relations for these actuators. If losses from flux leakage and fringing are also assumed negligible,
the applicable magnetostatic field equations become one dimensional. Flux and field intensity at any point
in the bearing can then be solved by circuit thed®o[r§d. An analysis of the magnetic circuits in the
actuator yields a quadratic relationship between coil currents and resulting forces. These force relations will
be derived with the specific example of the radial magnetic bearing in mind; however, the same technique
applies to configurations with other than two degrees of freedom.

An n pole magnetic bearing (as exemplified by Rdl) is characterized bR;, Nij, @;, a;, andO;
for j = 1...n, the reluctance, magnetomotive force contribution, flux, pole face area, and orientation angle
respectively for each pole. Considering that steel or iron has a relative permeability of greater than 1000, the
reluctances of all metal parts of the flux path are neglected; virtually all of the circuit reluctance is due to the
air gap associated with each pole. Positive fluxes are directed out of the stator poles into the rotor by the sign
convention for this model. Positive coil currents pass counter-clockwise around the stator poles when viewing
the pole end from the gap. It is assumed that the only sources of magnetic excitation in the bearing are the
coils wound on each pole. This assumption specifically excludes bearings employing permanent magnets
from this analysis. An equivalent electrical circuit, useful in understanding the development of the governing
magnetic equations, appears in Figure 37.

The application of Ampere’s loop law to the magnetic circuit results-il independent equations:

R0 = Riva@j1 = Njij —Njiaijia (3.1)
where the reluctance of th& gap is _
R = 9 (3.2)
Hod|

One independent equation results from flux conservation:

> @ =0 (3.3)
=1
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Figure 3.1 Typical bearing arrangement

Arranging these equations in matrix form produces

R -R 0 0 Ni —-N, O 0
0 R -R . : 0 N —N3 . :
. _ _ = . . . . i 3.4
: . . . o | : . . . o | (3.4)
0o - 0 R -R 0 - 0 Npz —Ng
11 .. 1 1 o o0 - 0 0

This matrix relationship is represented more succinctly by
Rp= Ni (3.5)
whereR can easily be shown to be nonsingular. The flux in each leg due to the applied currents is then
@=RINi (3.6)

A useful result that can be obtained froB16) is the matrixL of self and mutual inductances between the
different coils in the bearing:
L =diagNy,...,Ny]R "IN (3.7)

Assuming uniform flux density in the air gap, flgx is related to flux density; by @; = bja;. In matrix
form, this relationship is

o= Ab (3.8)
whereA is a diagonal matrix of pole face areas. Re-arranging and substituting 3:8paad @.8),
b=A"RINi=Vi, V=A"RIN (3.9)

Note from @.4) that the matriXN has a nullity of 1. Consequently, one of the currentsimredundant if
each leg has an independent coil.

Forces produced by the bearing can be computed by variations of the energy stored in the system or
by Maxwell’s stress tensor. A complete discussion of the different methods of calculating magnetic force is
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Figure 3.2 Equivalent electrical circuit

contained in$ad92. Here, the energy method will be used under the constant excitation voltage assumption.
Assuming linear materials, the energy stored in a magnetic field is defined in the general case as

1
E— /ﬁlb-bdv (3.10)

whereb is vector flux density and the integral is taken over all space. In the present one-dimensional analysis,
the only component ib along the path direction. Due to the assumptions of no leakage and zero reluctance
of the metal sections of the path, all of the energy is stored in the air gaps:
n
gi[¥aj, -
E = b (3.11)
le 20

The energy can be written in vector form as
E =b'Yb=i'V'Y[XVi (3.12)

whereY[x] is a diagonal matrix with thg'" entry equal tagj[x/aj/(21). Note that theg;[x] are the mean

air gap lengths as functions &f a set of coordinates specifying the rotor’s position. Coordingtes and

x3 might be associated with translations alongXh¥ andZ axes that define some fixed coordinate system,

whereasy, xs andxg might be associated with infinitesimal rotations aboutth¥ andZ axes respectively.
Force is defined as

JE
— —bYjb (3.13)
—i'V'Y;Vi
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whereY; denote%. Defining the symmetric matribd; as

it can be noted that the current-to-force relation is identical in forh 1&
fj = i/Mji (3.15)

In the particular case of radial magnetic bearings, the only force components areXiratitey’ directions
(see Figure.1). In this case, the position-dependent gap lengths are

gj[X] = gj.0 —XxC0SOj —ysinO; (3.16)

whereg;j o is the length of thg'™" gap when the rotor is in the centered position. MatriégandYy can then
be explicitly defined as

(3.17)

Yx = diag{iaj COS@]]

v, - diag{aj sinejl

2o

whereQj is the angular position of the centerline of tfi& stator leg.
If one or more of the coils is missing or has failédjij = 0), then 8.19 still applies. The matrix
K is introduced to relate the reduced order current vector of dimemnstorthe full current vector:

i=Ki (3.18)

Matrix K is simply the identity matrix with columns removed corresponding to each failed or missing coil.
Substituting into 8.15) yields:
fj = 1" (K'MjK) (3.19)

Matrix K can also be used to indicate coils wired in series. In this case, the vector of coil currents
can be represented as the product of a matrix times a vedtotefendentoil currents. For instance, assume
that coils 1 and 2 are wound in reverse serigs{ —i1). TheK reflecting this coupling would be

1 0 0
-1 0

K=| 0 1
0 0 --- 1

It is worth noting thatv'Y;V has a null space of dimension 1. This singularity can be removed by
defining aK with n— 1 columns whose columns span the row spads.of

3.1 Example 1 — Asymmetric Magnetic Bearing

In the past, the problem of determining bias and control currents was only considered for symmetric cases.
Under these conditions, the proper linearizing currents are obtained by inspection. However, when symmetry
is lost, determination of the proper currents is no longer a trivial problem. Take for example the bearing
pictured in Figure3.3. The geometry of this bearing is described in Tahle wherea = 1cn?, go = 1mm

andN = 200. The unusual asymmetry of this example is intended only to emphasize the generality of the
result: such asymmetry would seldom be encountered in practice. The point to this example is that the usual
assumptions concerning symmetry are not needed — a result which is particularly useful in permitting the
fault tolerance alluded to in the introduction.
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Figure 3.3 Asymmetric bearing.

Leg | 6 Area | Turns| Gap
o° a N Jo
70° | 2a | 2N Oo
125 | 2a | 3N Jo
16 | a 2N Jo
240 | a N Jo
31C° | 2a 2N Jo

OO, WN P

Table 3.1 Asymmetric bearing parameters.

The reluctance of each air gap is determined®®)( Substituting the reluctances int8.4) gives:

1. -05 O 0. O 0. 1. -2 0. 0 0 O
00 05 -05 0 O 0. 00 2 -3 0 0 O
% |0. O 05 -1 o 0. 10 0. 3 -2 0 0 .
ba |0. 0. oo 1 -1 o |*No o o 2 -1 ol (3.20)
0. O 0. 00 1 -05 00 0 o0 o0 1 -2
1. 1. 1. 1. 1. 1. 0. O 0. 0. 0. 0
Re-arranging according t8.9), the current to flux density relationship is:
8 -4 -6 -2 -1 -4
-1 14 -6 -2 -1 -4
b—“LN -1 -4 21 -2 -1 -4 i (3.21)

T 9 |-1 -4 -6 16 -1 -4
-1 -4 -6 -2 8 -4
-1 -4 -6 -2 -1 14
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This example is a radial magnetic bearing; therefgkeandYy can be obtained directly fron3(17):

Yy = idiag[l., 0.6840 —1.1472 —0.9397 —0.5,1.2856 (3.22)

Yy = idiag[o, 1.87941.63830.3420 —0.866Q —1.5321 (3.23)

Because this stator has an independent coil on each leg, one coil will be redundant; rivgtacels
My will both be singular. This singularity can be removed with a suitdblenatrix. TheK matrix should
have columns orthogonal to the null spac&ofThis null space represents a vector of currents that produces
no flux through the gaps. Whé is chosen orthogonal to this space, a given flux distribution is then realized
with the least possible power dissipation since all portions of the current are contributing to producing flux.
One such matrix, derived by Gram—Schmidt orthogonalizatit}8f of the N matrix, is

0.447214 (0255551 0337645 0487556 0182932
—0.894427 0127775 0168823 (0243778 00914661
0. —0.958315 0112548 0162519 00609774

K= 0. 0. 0019145 (243778 00914661 (3.24)
0. 0. 0. 0785507 0182932
0. 0. 0. 0. —0.95531

Note that the choice of this particular matrix is somewhat arbitrary. Any d€herthose columns lie perpen-
dicular to the null space &f would give the same power-minimizing properties.
The force-current relationships are specified 9 as:

4.762 1865 0983 —-0.395 —-3.105

ajN?) | 1865 12882 5985 2487 0862
K 'M,K —( 8 ) 0983 5985 —7.667 1203 2126 (3.25)
% —0.395 2487 1203 -1.196 1731

—3.105 0862 2126 1731 8076
9.681 —-9.828 —-2.484 -0.175 -0.53

apoN? —0.828 23695 —-2955 0426 Q464
K'MK = <—2> —2484 —-2955 3961 Q0444 (0817 (3.26)
Y —-0.175 Q0426 Q0444 -1891 Q673

—0533 0464 Q0817 Q0673 —-858

3.2 Example 2 — 3 d.o.f. actuator

As an example of a device with more than two degrees of freedom, consider the device pictured iB.Bigure
This particular magnetic bearing contro{sandY forces as well as a torque about thexis. Each coil is
wound withN turns and has a pole areaafThe air gaps as a function of rotor position are:

g1 = Qo—X

02 = Go—Yy—dB

03 = Go—Yy+dp

P (3.27)

05 = Qot+y—dB
Os = Qot+y+dB

whereg, is nominal gap length.
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—r

Figure 3.4 3 d.o.f. magnetic bearing.

From @.4),
1 -1 0 0 0 O 1 -1 0 0 0 0
01 -1 0 0 0 01 -1 0 0 O
%10 0 1 -1 0 0leg=N|O 0O 1 -1 0 0] (3.28)
319 0 0 1 -1 0 0 0 0 1 -10
11 1 1 1 1 00 0 0 0 O

Inverting the left-hand side and dividing layresults in 8.9).

5 -1 -1 -1 -1 -1
-1 5 -1 -1 -1 -1

BN -1 -1 5 -1 -1 -1,

b=8w | -1 -1 -1 5 -1 -1 (3.29)
-1 -1 -1 -1 5 -1
-1 -1 -1 -1 -1 5

By differentiating 3.27) by the rotor degrees of freedom,

a .
Yy = (—2u0>d|ag{—1,0,0,1,0,0} (3.30)
a .
Y, = (ﬂ) diag{0, ~1,~1,0,1,1} (3.31)
vy = (29)diag0,-1,1,0-1.1} (3.32)
B = 2“0 ) ) ) :

MatricesMy, My, andMg characterizing the current-to-force and current-to-torque relationships are
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formed from 3.14):

4 1 1 0 1 1
1 0 0 -1 0 0
 maN?’| 1 0 0 -1 0 O
M=-"Tg | 0o 1 1 4 1 1 (3.33)
1 0 0 -1 0 0
1 0 0 -1 0 o0 |
0 1 1 0 -1 -1]
1 -4 2 1 0 0
 paN?| 1 2 -4 1 0 O
W="T@| 0o 1 1 0 -1 -1 (3-34)
1 0 0 -1 4 -2
1 0 0 -1 -2 4 |
0 1 -1 0 1 -1
1 -4 0 1 2 0
U T R (3.35)
126 | 1 2 0 1 -4 o0

-1 0 -2 -1 0 4

These three matrices completely define the relationship between coil current and output forces/torques.

3.3 Variation of force with position

It is important to note that the current-to-force relations derived above are a function of the position of the
suspended object. This dependence arises because the reluctance of each air gap varies linearly with the
length of the gap, as shown i8.9). Consequently, reluctance matRxs a linear function of rotor position.
However,R is inverted to obtain the force relations; the dependence of force on position is therefore not
linear.

The position-dependence of each air gap can be specifically included R riegtrix. An exact
expression for position-dependent force can then be obtained by inverting this symbolic Raidxthen
forming the force relations vie3(15. However, the symbolic inversion &t is only possible for matrices
of low dimension. An alternative formulation that does not involve inverting a symbolic matrix is a Taylor
series expansion of force in terms of displacements. For small displacements, it is sufficient to truncate this
expansion after the first term:

fi =i [ M +§xan" i (3.36)
i = Jlx= v :
x=0 =1 0Xq X=0
The derivatives oM; can be evaluated analytically:
R o0R
——=-R1—-R1! 3.37
0xj 0Xj ( )
Eqg. 3.37 can then be used to evaluate the derivatives:of
ov—1 o0R o0R
=-RI_RIN=-R1— 3.38
0Xj 0Xj 0xj ( )

Finally, the derivatives oM; are

% = i(_v/ij)
0Xq 0Xj
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v’ ov

= —YV+VY— 3.39
an v Ja j ( )
R’ R
~ v R R*TY,-V+V’Y,-R*16—
0X; 0X;

As an example of the above procedure, a one-term taylor expansion of force is computed for a
symmetric 8-pole bearing in Appendix



Chapter 4

Current to force relations: Lorentz force
actuator

The Magnetic Stereotaxis Machine is an example of a Lorentz force actuator; that is, an actuator wherein
forces are derived by an electromagnet acting upon a piece of permanent magnetic material. Although
Lorentz-type devices are usually linear, peculiarities of this particular machine give it a set of quadratic
current-to-force relationships identical in form to those derived previously for Maxwell force actuators.

4.1 Governing Dipole Equations

Since the dimensions of the permanent magnet seed are very small compared to the size of the superconduct-
ing coils, the seed can be idealized as a point dipole. The magnetic properties of the seed are summarized by
the seed’s dipole moment). The direction of this vector is the same as the direction of magnetization in the
seed. The magnitude af is the product of the magnetization and volume of the seed.

Derivation of the forces and torques on a dipole due to an applied magnetic field can be found in the
literature Pac73. Definingp as a position vector locating the seed relative to the center of the helmet, the
force on the seed is

fp] = O(m - b[p]) (4.1)
and the torque is
t[p] = mx bip] (4.2)

4.2 Formulation of Current-to-Force Relationships

Equations 4.1) and @.2) specify the force and torque respectively on the dipole seed, but they do not imply
any particular basis in terms of which these vectors are represented. A computationally useful form of these
equations can be obtained by defining a basis of orthogonal vegtarsandns that are fixed at the center

of the helmet. With these vectors, define

P = Xni+yn2+2n3

m = mni+ MmNz + Mgn3 (4.3)
f = fini+ fanp+ fang '

b = bing+bny+bsns

Sincem is not a function op, (4.1) can be written in matrix form as

m(ab

fi = —
! ox

18
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db

= — 4.4

f2 n 3y (4.4)
ob
f3 E

where(’) denotes transpose.

Equation 4.4) defines the field-to-force relation in a particular reference frame, but the connection
between coil currents and the magnetic fidddmust still be defined. Since the permeability of the seed is
very close to that of free space, it is appropriate to characterize the field at a point as a linear superposition
of field contributions created by each of the six coils. Furthermore, the contribution of any particular coil is
linearly proportional to the current in that coil. The relationship between coil current and field can then be
concisely represented in matrix notation as

b[x,y,Z = B[x,y,7Zi (4.5)

wherei is a column matrix of coil currents alis a 3x 6 matrix dependent on seed position. TKecolumn

of B represents the contribution of ti# coil to the field atx,y, 7 in response to a unit of current in the coil.
Spatial derivatives of the field also follow the same rule of superposition. Coil currents are related

to these derivatives by the differentiation df%):

ob  [0B[x,y,Z] . B
w [T i where w=x,y,z (4.6)
Defining
oB 0B 0B
= —; = —; = — 4.7
D1 I D2 3y 3= 3, (4.7)
and referring to4.4), a particular force component is
fj = I‘T{Dji (4.8)

For a given dipole orientation, all force components can be collected into the expression

m D,
f=|mDy |i (4.9)
m D3

Eq. @.8) appears to be linear in However, peculiarities of the MSS makea function ofi. There
are several crucial observations that can be made about the motions of a permanent magnet seed through
neural tissue due to a slowly varying magnetic field. First, there is a certain threshold force that must be
exceeded for translational motion to occur. Second, the resistance of the seed to rotation is negligible, as
has been observed experimenta@®r§9Q [ MRW954. From @.2), it can be noted that torque on the seed is
zero only wherm is aligned withb. Furthermore, ifm is parallel tob, a small perturbation im produces a
torque that tends to re-align andb. The converse is true ih is antiparallel tdb. Since the seed is free to
rotate, it will align with the only stable equilibrium orientatiom:||b. Since there is a considerable threshold
force that must be applied before translational motion begins, the seed is assumed to line lupefire
any change in seed position occurs.

The constraint that the dipole moment is aligned with the flux density field is written as

[m|
m=-—b (4.10)
]
Substituting from 4.5), the dipole moment in matrix notation is
m— Bl (4.11)

VI'B'Bi
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wherey is a constant equal fon|. Combining 4.11) with the previously developed current to force relation
(4.8) yields
B yi’B’Dji

f.
' /BB

(4.12)

By employing the coordinate transformation
i — \l/\/l’B’B| (4.13)

the denominator 0f4.12) is removed, leaving a quadraticin
f; =1'B'DjI (4.14)

Eq. @.14) is quadratic in. For ease of manipulation, it is preferable to manipulate quadratics in
terms of operations on symmetric matrices. Any square matrix can be represented as the sum of a symmetric
and an anti-symmetric matriXdg85. A quadratic formed from the anti-symmetric part is always zero;
therefore, only the symmetric part BfD; contributes ta’B'DjI. DefineM; as the symmetric part &'Dj:

1
M = E(D'j|3+ B'Dj) (4.15)
The force relations can now be written in terms of the symmetric mathiesa homogeneous quadratic

form identical to (.13):
fi = 1'Mji (4.16)



Chapter 5

Realizablility of arbitrary forces

This chapter considers conditions ensuring that a force can be produced in every intended direction by some
set of input currents. Knowledge of these conditions is vital to the successful design of magnetic actuators.
Previously, actuators were designed in opposed pairs, ensuring that all forces could be produced. Although
such a design is sufficient to produce all forces, it will be shown that it is not necessary. More general
conditions will be presented that also ensure that every force can be realized. These conditions are of special
interest in the case of coil failures; they can be used to determine which failure configurations are and are not
catastrophic.
The goal of all forces being realizable can be precisely defined in a mathematical sense. Define the
setW ] to be
i’Myi
W ([My,...,My] = : edX:ienn (5.1)
i"Mi
W ] is the set of all possible forces that can be produced by a given actuator characterikéd.by, My).
A successful actuator design should satisfy the following proposition:

Proposition 5.1 WMy, ...,My] = Ok

The conditions for which Progh. 1is true have been studied in the literature for some special cases.
Elegant results have been obtainedling9( for the case in which alM matrices are diagonal or simul-
taneously diagonalizable. Results have also been obtained in the literature for 2-d.o.f. actuators with no
restrictions on the structure of tid matrices. These two results will be explored; then, necessary and
sufficient conditions for the truth of Prop.1 under the constraint of finite slew rate will be explored.

5.1 DiagonalM matrices

If all M matrices are diagonal, the current-to-force relations can be written as

diagonal oM
f= : e=Ke; Kegk (5.2)
diagonal oMy
where
i2
1
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Since theMl matrices are diagonal, the problem can be converted to a linear problem in terms of the squares
of the currents. For Prop.1to be true, every element inmust be realizable by sonee> 0 in the sense that
every component of e i 0).

Proposition 5.2 If RanKK] < k, Prop.5.1is false.

Proof: If RanKK] < k, the system of equations is underdetermined. Any force with a component
perpendicular to the columns Kfis not realizable. SincRanKK] < k, there is at least one one-dimensional
space of unrealizable forces.RanKK] = k, K is invertible, yielding a unique, one-to-one mapping between
eandf. For anye chosen with a component less than zero, the féreeKe is not realizable.

For n > k, partitionK into a set ofk linearly independent column&;, and a set of remaining
columnsKoy:

K = [K1|K2] (5.4)

Likewise, partitioneinto e; ande, corresponding to the partitioning &f so that
f = Kiey + Koep (5.5)

This equation can be solved fey:
e = K1 — K 'Koep (5.6)

The possible solutions farthat realize a given force are then

[ )e

wheree; is chosen arbitrarily. Equation (118) can be written more succinctly as

e=er|[f]+ep[er] (5.8)
where
KL
ailf] =4 |1 (5.9)
and .
enlez] = [_Kll Kz}ez (5.10)

Thees component ok is mandatory for creating the desired foriceHowever, by direct substitution, it can
be seen that the, component ot creates no force:

Kep = Ki(—K; 'Kz)ez + Kaez = 0

Thoughe, does not create any force, it is essential to generating a realigabléthe elements ire; are
not necessarily greater than or equal to zero for a giveso an appropriate, must be included to make all
elements ire greater than or equal to zero and therefore realizable.

Proposition 5.3 The existence of a vectos & 0" such that

K 'Koes > 0
e >0

is a necessary and sufficient condition for Préplto be true.
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Sufficient:Assumet that there exists a veatpisatisfying the above conditions. Lext = co€; where
Co is defined as:
min(K; 1)
min(—K; tkoe3)

(5.11)

Note that since —K; tko€; > 0) by definition, the denominator af, is never zero, and, is always finite.
This choice ok, yields:
er =K, M — coK; Kaes (5.12)

Sincec, > 0, by (6.11), thee; component ok must be greater than or equal to zero, sieice 0. Further-
more, this choice o€, guarantees that every elemeneismust be greater than or equal to zero, singe
scales(—Kl‘leeQ*) so that its smallest component is positive and of equal magnitude to the most negative
component ir(Kl‘lf). Sincee; > 0 andey, > 0, e > 0 and is therefore realizable. Since the choicé of
arbitrary, all forces can be produced by a realizable

NecessarySinceK ~! is non-singular, somé can be chosen so that

-1
KH=¢
-1
For this particularf,
-1
e = — Ky Ko
-1

If there is no(—K{leeQ* > 0), r1 cannot be made greater than or equalt to zero for thi§he required
conditions are therefore necessary.

The required current vectey[e;] can be considered a biasing vector; that is, a vector of non-zero
currents that produces zero forces in the actuator. This set of currents heuristically “pre-tensions” the system
so that forces can be produced in an arbitrary direction, analogous to the way that gravity pre-tensions the
system in Figur&.1 Gravity provides a downward force; by counteracting lesser or greater amounts of the
force of gravity, a net force in either an up or down direction can be produced, even though the horse-shoe
magnet can only pull upwards.

Although Prop. 122 only applies for a system with diagonal matrices, it does imply an interesting
design constraint for any Maxwell-force actuator:

Corollary 5.1 Any Maxwell-force actuator must have at least & poles as a necessary condition for all
forces to be realizable.

Proof: The flux-to-force relationship is characterized in (51) as
fj = —b//\jb

whereA\; is a diagonal matrix. In terms of fluxes rather than currents, every actuator assumes a diagonal
form regardless of the pattern in which the coils are wound. For fluxes to be chosen that realize all arbitrary
forces, exactly the same argument as in Prop. 114 and in the “necessary” part of Prop. 122 can be made,
simply substituting fluxes for currents. However, flux conservation constraints preclude all possible sets of
gap fluxes from being realizell+ 1 poles is not a sufficient condition for all forces to be realized.
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%%i

Mass

Figure 5.1 Horse-shoe actuator biased by gravity.

5.2 Necessary conditions for realizability of arbitrary forces in the lit-
erature

The other relevant case previously considered in the literature is a 2 degree-of-freedom actuator with no
restrictions on the form of th®l matrices other than symmetry. This problem has been considered in math-
ematics literature under the guise of “joint numerical range of hermitian matrices,” with no connection to a
physical problemAYT84] [TU9]] [BL91]. The relevant result is

Theorem 5.1 Given the two degree-of-freedom force relation
f1. = i'Mqi
fo = i'Mai
Prop. 114 is true only if the matrix penci{®l; + coM> is indefinite for all real g, C;.

In demonstrating this result, it is first important to consider the forces producible for any single
matrix M.

Lemma 5.1 The quadratic form f=i’Mi, where M is real and symmetric, can produce<f0 and f > 0 if
and only if M is indefinite (has both positive and negative eigenvalues).

Proof: Let M = ®AQ’ be the eigenvalue decompositionMf SinceM is real and symmetric, all
entries in diagonal matriA are real. Since the ordering of the entrieg\is arbitrary, they can be assumed
to be specified in descending order such thaan be partitioned as

N1 0O O
A=|0 0 O
0 0 —/N2

where/\; represents the positive eigenvaluedf—/A, represents the negative eigenvalued/ofand all
elements of\; and/A, are greater than zero. Defire= @i and letx be partitioned into 3 parts corresponding
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to the partitioning of\. Then, force written in terms ofis
f= X/l/\le — Xo/\oXo

In this form, each terrt}A1x1 andx,/A2x. can only produce a result greater than zerodog 0 andx; # 0,
respectively.

One way to demonstrate the “if” part of the lemma is to pigkZ 0 andx, = O to produce a positive
result andkp # 0 andx; = 0 to produce a negative result.

For the “only if”, assume tha¥l is indefinite and results of only one sign can be produced. Then,
either/\1 or Ay must be of dimension 0, in which cadd,is either definite or semidefinite.

The result from Lemma&.1can be extended to show the necessity of ThedrdmParameterize the

forcef as
_Ja
f= {Cz} (5.13)

wherec; andc; are arbitrary real numbers. If there isiahat realizes this force,
f/'f = c1i’Myi + Coi'Mai = 2 + 3 (5.14)

Since(cﬁ + c%) is always greater than or equal to zero, for the above to be true,

i/(ClMl—i—CzMz)i >0 (5.15)
Alternatively, a force of
__Ja
{2 516
could also be desired. In this case,
f'f = —ci’Myi — Coi'Mai = G2+ ¢3 (5.17)
implying
i/(ClMl—l—CzMz)i <0 (5.18)

By Lemmab5.1, for (5.15 and 6.18) to both be realized,ciM1 4+ c;M2) must be indefinite. Sinoey andc;
are arbitrary real number&: M1 + c2M2) must be indefinite for all read;, c; for all forces to be realized.

Note that the same proof of necessity would also apply to a system with arbitrarily many force
directions: If the forces produced by an actuator are characterizéMpy..,My), every possible linear
combination oM matrices must be indefinite for all possible forces to be produced.

5.2.1 Test of indefiniteness for two force directions

Although the extension of TheoreBilto more than two force directions is difficult to test, the 2 d.o.f. case
can easily be evaluated. Since the inertia of a matrix is not changed by scaling the matrix by a non-zero
constant, an equivalent of Theoréni is that

Qls = (M1 +sMy) (5.19)

must be indefinite for al. However,Q[s| need not be exhaustively tested oversllThe eigenvalues of
a polynomial matrix likeQ are known to vary smoothly witk the only possible changes in sign (and thus
changes from indefinite) occur at valueseihereQ[s| has a zero eigenvalue. These valuesan be found
by solving forsthat satisfies

detQ[g =0 (5.20)

for s. Note that de[g] is at most am'" order polynomial in s. Then, i1, andM; are indefinite, and every
Q[g for ssatisfying 6.20 is indefinite, Q[s] is indefinite for aband Theorenb.1is satisfied.
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This test will work unmodified in most cases; however, there is the pathological case in which the
determinant ofQ[g] is zero for alls. The same sort of test can be used in this case as well, but the zero
eigenvalues must be factored out so that the characteristic polynomial is only zero at the zero crossings
of the eigenvalues. The zero eigenvalues are factored out by first forming the more general determinant
det(Q[s] — Al). This is the characteristic polynomial that would be used to find the eigenvalu@(s|cdt
a particular value o§. This polynomial is then divided b to eliminate the zero eigenvalue. Since only
the zero crossings are of interektis then set to zero, anQ[g is tested at the roots of the reduced-order

polynomial.
For example, consider the case
010 0 01
Mi=1{1 0 0] Mx=|0 0 O
0 0O 1 00

The matrixQls| associated with these two matrices is always singulafdvquandM; do not share a common
zero eigenvalue that might merely be reduced out. Formet@[s] — Al ) yields

A=A 4N =0
Factoring out & and setting\ to zero yields
£+1=0

The roots are purely imaginary, indicating no zero crossings. Since there are no zero crossings, the signs of
the eigenvalues do not change from th# pair ofM1. M1 andM3 satisfy the necessary conditions for all
forces to be produced.

5.3 Conditions for a solution realizable with finite current slew rate

Because the actuator currents are realized by applying volta?es, the requested change in current with respect
to time, %, must be finite (see AppendB). As long as a ﬁnite‘é—t is requested% is finite if every element
in 3¢ is finite.

If a proposed inversgf] is in hand, it is easy enough to check that the gradien{fdfis finite
everywhere in the range of magnitudes of interest. If the inverse mapdihg not known, one might
instead consider if, for a given point, there exists a continuous current trajectory leading away from the point

in every possible force direction.

Lemma 5.2 For an actuator with a current-to-force relation described Hy1(3, a current vector i is on a
finite current slew rate realizable solution manifold only if the matrix
i"'M1
2| 1 [ =2H (5.21)
i’ My

df _
di

has a rank of k.

If H is not of rankk, then the force cannot be modified in any direction with a component in the null space of
HH’.

It has been shown in the literatur&YT84] that Theorenb.1lis a sufficient as well as necessary
condition for all forces for be produced fke= 2 andn > 2. However, this condition admits many cases that
are physically unrealizable. For example, consider

1 0 O 010

M= |0 -1 o0f; Mo=|1 0 O (5.22)
0 0 O 000
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This form arises from three-pole radial magnetic actuators. In this cask thatrices are % 3 because an
independent coil is wound on each leg. There is a common null spade @amdM, caused by conservation
of flux constraints. The eigenvalues@fs| = M3 +sM, are 0 andtv/1+ s%. Regardless of the choice of s,
there is always one positive and one negative eigenvalue. Mafsjxs indefinite for alls, and all forces are
therefore realizable. However, when the force relations

— 2_j2
fi. = i1-1i5

f, = 2 (5.23)

are examined, it is apparent that the only way to realize a zero force iswithy, = 0. If i1 andi, are zero,
the resultingH[i] is also zero and therefore singular: even tholghandM3 can produce every force, they
cannot produce them without requiring an infinite current slew rafe-a0.

5.4 General realizability condition

A more restrictive condition is therefore needed that tests not only if a skt ofatrices can realize all
forces, but if those forces can be produced by a scheme that requires a finite current slew rate (that is, obeys
Lemmab.2at every point). This condition is:

Theorem 5.2 Every possible set of forces can be obtained by a continuous manifold with finite gradients if
and only if there exists a current vectgrsuch that

ipM1io =0
i Mido — 0
and
inM1
Hlio] = | :
isMy
is of rank k.

Necessarylf i does not exist, Lemm&2cannot be satisfied dt= 0. If Lemmab.2is not satisfied,
there are some directions in which the differential current required to cause a differential change from zero
force is infinte The actuator is subject to slew rate limiting about zero forceiif erists.

Sufficient:The strategy for showing sufficiency is to show thag iéxists, a path can be created from
zero force to any force within a finite ball about zero force. If every force inside the ball can be realized, then
a force of with a magnitude lying outside the ball can be realized by simply scaling the currents required to
produce the largest force inside the ball in the same direction as the desired force.

Define current to be

1 .
| = EIO+8I1 (524)

define currenty to be
i1= %H[io]'(H[io]H[io]')_le 04 (5.25)

wherezis a vector of the same dimensionfasSubstitute the definition afinto the force relationsl(13:

fi = i/l\/lji

1 . 1 .
(E|0+£|1)IMJ’(E|0+£|1)

1., . . . . .
= (E)Zlgl\/ljlo—l—2I6Mjl1+£2I3_|V|jI1 (5.26)
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Since(ipMjio = 0) by definition,

fj = 2i,Mji1 + €%} Mjis (5.27)
The current-to-force relationships for each direction characterize8.8y)(can be combined into one ex-
pression as:

i1M1iq
f = 2H(ioliy + €2 : (5.28)
i1Mid 1
Substituting from %.25) for iy yields:
f=2z+¢€% (5.29)
where
ZO'M1 Pz
0= { : } (5.30)
ZO' M bz

The first task is to get a bound on the magnitude oféquired to produce a given magnitude fof Using
(5.29 and the triangle inequality,

|f — €29
||+ €23 (5.31)
(5.32)

12

IN

Any individual entry,5;, in & will be less than or equal tE[GJ’MJ-<D]|z|2 by definition of maximum singular
value. A bound ond| would then bee|z|2, wherec? is defined as

=k (maxE[CD’M jcp]) (5.33)
i
Substituting into %.31),

|2 < |f]+ (eclz))? (5.34)

This expression can be solved farto yield

1—/1—4c%€?|f|
5.35
2c%¢? (5-35)
< |f|+c%?|f|? for smalle

2

IN

The strategy is to realize arbitrary forces by starting from the initial conditierD at zero force
and integratinglz/d f to reach the desired force. The change in force with respexsto

» ZO/My®
— = [I +2¢?

& (5.36)

7'M P

Gradient matripd f/dzmust be inverted to obtaithz/d f, which is then integrated along the path from initial
condition to desired current. If there is no non-zero real vecfor whichx/(d f /dz)x = 0, thend f /dzmust
be invertible. If the condition

ZY'M; P

260 <1 (5.37)

ZO'Md
is satisfied, there is no way fdK'(d f/dz)x = 0) to be true. Inside some arbitrary bafl| < fmax |2] is
bounded by%.35. Knowing this bound, aa can then be picked so th&.B87) is always true within the ball,



CHAPTER 5. REALIZABILITY OF ARBITRARY FORCES 29

and thereforel f /dz always invertible inside the ball. It is then possible to starf at 0,z= 0 and march
along an arbitrary trajectory inside the ball, moving from force to force with finite gradients. For forces of
magnitude greater thaihax a solution with finite gradients results from a simple scaling of that realizes
[f] = fmax

This inverse scheme is most likely not thestsmooth inverse possible, but the point is to show that
the existence off, allows all forces to be produced, is necessary for an inverse with finite gradients, and has
at least one inverse solution with finite gradients.

A great similarity between Theorem2for a general actuator and Proposition 122 can be noted. In
each case, the existence of a biasing current vector is a necessary and sufficient condition for all forces to be
produced.

5.4.1 Numerical discovery ofiq

If a valid i, does exist, it is relatively easy to find numerically. To satisfy TheobePna vectori, must
satisfy:

‘Ml = 0
: (5.38)
i!Mdo = O

Denote these conditiofgiy] = O for short. The last condition is included so that the zero vector is discounted.
An i that satisfies the conditions can then be found by a modified Newton-Raphson iteration.
Define matrixH as theH from Lemma5.2 augmented by the roi. If F[i] is linearized about the
ji" iteration,;, i
Flix+ di] = F[ik] + 2H[ix]oi (5.39)
Setting the approximation df[ix + di] equal to zero and solving for the smalléstthat will satisfy the
conditions yields:
. 1~ 0~ .
5i = —EH’(HH’)*lF[Ik] (5.40)
Thek-+ 1 approximation of,, is then
ikt1=Ik+Oi (5.41)

This iteration usually converges very quickly whenigexists.
Note that this iteration relies upon the fact thiis of rankk to compute the subsequegts. There-
fore, any vector converged upon by this iteration satisfies the conditiohlfhats of rankk automatically.



Chapter 6

Inverse Solution — Bias Linearization

For a typical magnetic actuator, there are many more currents to be specified than forces to be produced. Any
desired force might then be realized by many different sets of coil currents. Since many solutions might be
possible, the task is not merely to find a set of currents that realizes every desired force, but to produce each
force in the “best” possible way. In this chapter, the criteria for a “good” inverse is ease of implementation;
an inverse in which each current is merely a linear function of force is desired. This criterion is reduced to a
general mathematical problem form, and different methods of solving this problem are explored.

6.1 Formulation of the generalized bias linearization problem

In the Chapter 1, the bias linearization of a 2-horseshoe actuator was considered. By direct substitution, one
can verify that the change of variables

1= ﬁ:(fo + |Ac)
i— L (G _% (6.1)
2= Z_\E(IO |c)
and the current to force relation
f =c(i2—i3) (6.2)
yields the bilinear form L

If iy is held constant, force is a linear functionigf

For an actuator that produces force in multiple directions, one desires a change in variables that
results in a bias current, and a control current associated with each force diredﬁgn, . fck. This change
of variables should be chosen to transform the force relations into the form

f1=lolc1
: (6.4)
fc = lolck
in terms of the transformed currents. The desired result can be written in matrix form as
fi =i'M;i (6.5)
for each force direction where -
lo
R ic1
T (6.6)
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andl\?lj is a(k+1) x (k+ 1) matrix filled with zeros except for thgj + 1,1} and{1, j + 1} entries, which

are equal tc;.
For example, thé1 matrix corresponding to the 2-horseshoe case is
- o 1
w2 g
5 0

andi = {io,ic}T. Substituting into §.5) yields f = iyic. R
Analogous to the 2-horseshoe case, a linear transformation betwedhis desired. This transfor-
mation will be denoted

i=Wi (6.7)
For example, the transformation for the horseshoe da&ecan be written in matrix form as
. ~ 1 (1 1|~
I=Wi=— i 6.8
el ) oo

For the general case, 1 bias current kredntrol currents are mapped imaoil currents, implying
thatW is ann x (k+ 1) matrix. Substituting.7) into the generalized force relatioris 13 yields
f1 = "W M{Wi
: (6.9)
fi = "W/ MW
If W transforms the force relations into the desired fofb), egs. 6.5 and 6.9) can set equal to

one another, producing . . ~”n oA
I"'WMWi = f1 = I’"Ma

: (6.10)
W MW = fie = "Myl
For all forces to be realizeds (L0) must apply regardless of the choice of
W/MIW = My
5 (6.11)
W MW = My

Equation 6.11) is the generalized bias linearization problem. To control an actuator using a bias linearization
scheme, the task is to find a matkix that satisfies@.11). If such aW is found, the desired forn6(4) is
realized by transformatior6(7), and an inverse mapping that realizes any force is
iAOA
f1/lo
. (6.12)
fk/ro
6.1.1 Note on choice of reference frame

If a given actuator can be bias linearized with Menatrices derived in one set of orthogonal coordinates, the
actuator can be bias linearized in any set of orthogonal coordinates. This fact can be shown by considering
the transformation of force in the “A’ reference framg, to force in the “B” reference framefg via the
orthonormal transformation matria

fg = BTAfa

ica (6.13)

= BTA

iACk
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Force in the “B” frame is still linear in the control current magnitudes. Linearization métrpan then be
converted to the new reference frame by

1 0
Wé: |:O BTA] WA (6-14)

6.2 A necessary condition for bias linearization

In the literature on quadratic form&dm73, a vectorx is known as ansotropic vectorwith respect to a
symmetric matrixM if
XMx=0 (6.15)

Likewise, two isotropic vectors; andx, form atotally isotropic spacéf every linear combination af; and
X2 is also an isotropic vector. It is important to note that most collections of isotropic vectors do not form an
isotropic space.

An isotropic vectory, can achieve a zero result with respeciton two ways:

1. xis an eigenvector dfl corresponding to a zero eigenvalue\bf

2. x produces equal and opposite contributions from a positive and a negative eigenvélue Fir

example, consider
1 0}, _J1
i-[o 5 {1}

A zero is produced by adding together a 1 from the first diagonal entry antl fiom the second
diagonal entry.

A totally isotropic space results from a combination of sets of paired eigenvalues and zero eigenval-
ues. For example, consider thematrix

1 0 0 O

0 -1 0 0 O
M=|0O 0 1 0 O

0O 0 0 -10

0O 0 0 O

One possible basis that spans a totally isotropic space is the columns of

o
-
o

The first column takes advantage of the first eigenvalue pair, the second column of the second eigenvalue pair,
and the last column the zero eigenvalue. Any linear combination of these vectors is also an isotropic vector.

A relatively intuitive result that is proven irLpbm73 is that the dimension of the largest totally
isotropic space realizable for any particular matrix is the sum of the number of positive and negative eigen-
value pairs plus the number of zero eigenvalues. The dimension of the maximal totally isotropic space will
be denotedv. For example, if som& matrix had the eigenvalues:

{1,-1,2,—-3,4,5,0,0}

the dimension of the maximal totally isotropic spaggwould be equal to 4, since there are t@igenvalue
pairs and two zero eigenvalues.



CHAPTER 6. INVERSE SOLUTION — BIAS LINEARIZATION 33

Generally, however, there are an infinite number of maximal totally isotropic spaces. Consider the

matrix
1 0 O
01 O
0 0 -1

In this case, there is one eigenvalue pair, so the dimension of the maximal totally isotropic space is one.
However, the vector
sinB
X= ¢ cosH
1

is isotropic for any choice 08; there are in infinite number of one-dimensional maximal totally isotropic
spaces. However, since the dimension of the maximal totally isotropic space is one, no two of this infinite
number of spaces can be combined to form a two dimensional isotropic space.

Upon examining.11), it can be seen that th@%through(k+ 1) columns inW are the basis of a
k-dimensional totally isotropic space with respect to eWdrgnatrix characterizing a particular actuator. For
ak-dimensional isotropic space to exist for evéy everyM must havev > k. Furthermore, it was shown
in the previous section that if an actuator can be linearized in one reference frame, it can be linearized in any
reference frame; therefore any linear combinatioMahatrices must have > k.

Consider the special case when all Manatrices have a common null space denoted. hyet the
dimension of this common null space be denatedror every vectox in z,

Mix=0; j=1,....ki xez
The lastk columns oW can have no componentin

Proof: Assume that there is\W that satisfies@.11) and, without loss of generality, let the
second column oV be an element af. From 6.11), WM1W, = 1. However, sincé\s is in z,
W/M1Ws = 0. There is a contradiction, so the assertion must be true.

If W > 0, the minimum necessawy for bias linearization must then lve > k+W. Althoughzis a totally
isotropic space, it cannot contribute\ié,
These results can be summarized as:

Theorem 6.1 Consider a set of real symmetric matrices,M. , My that satisfies TheoreB 1 necessary for

the realizability of all forces. Let w denote the dimension of the maximal totally isotropic space of a particular
matrix, and letw denote the dimension of any null space common to all of the M matrices. For a set of bias
linearizing currents to exist for the set of M’s, every linear combination of M matrices must have-wv.

6.2.1 2d.o.f. testing of the necessary condition

As with Theorenb.1, only the two degree-of-freedom case is feasible to test. The testing of Theorem 197
proceeds along the same basis as the testing of Themfetlined in 85.2.1 For the 2-d.o.f. case, a matrix
Q(s) is defined as

Q(s) = (M1 +sMp) (6.16)

wheres is an arbitrary real number. As in52.1, if the necessary condition applies for glithe condition

applies for all linear combinations &fl; andM,. Since Theorenb.1lis a precondition for Theorem 197,

all values ofs where zero crossing occur must be found in accordance with the procedurés2ril,&nd
Theoremb5.1 must be satisfied at each zero crossing as well asioandM,. Then, the conditions for
Theorem 197 can be tested. Since, once again, only the signs of the eigenvalues are of interest, Theorem 197
is sufficiently tested at only a finite number of points. Since there are several ways in widah be
composed, either of zero eigenvalues or of paired eigenvalues, Theorem 197 must be tested at every zero
crossings, and at one point between each zero crossingsv ¥ k + W at each one of these test points,
Theorem 197 is satisfied.
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6.3 Numerical determination of W

A useful way to obtainlV matrices satisfying@.11) is to find them numerically. An obvious but rather
expensive way of proceeding is to define the function

k
IW) =y [IWMW - M;3 (6.17)
=1

Any W that makes J=0 is clearly a solution ®.11). Many other such functions are equally valid, but this
particular cost function is a fourth-order polynomial in the elements of W. Gradient methods can then be
employed to minimize J.

Alternatively, a Newton-Raphson method can be used that closely parallels the method used to find
io In 8 5.4.1 This method finds a valid W without explicitly minimizin@.(7). Presently, this scheme will
be developed only for the case of radial magnetic bearings, but the generalization to any number of force
components is relatively straightforward.

Equation 6.11) describes(k? + 3k + 2)/2 constraint equations dfk + 1)n unknowns; almost al-
ways, the number of unknowns is more than the number of equations. If there were the same number of
unknowns and constraints, the usual Newton-Raphson method could be used. Here, the choice of the small-
est possible constraint satisfying step specifies a particular solution out of many possible step directions.

For the two dimensional case, the three column&/iwill be represented as

W = [Wh|Wer |Wez] (6.18)

The columns ofV can then be stacked on top of one another to make one vector mitbr8ponents. The
generalized bias linearization probleBv.11) can then be re-written as a series of quadratic forms in this
extended vector. Defind as

WMy 0 0
WM, 0 0
0 W/ M1 0
0 W/ M2 0
0 0 WMy
_ 0 0 W,M>
H= 0 WMy WM, (6.19)
0 W,LMz W;M,
My 0 WMy
WiM2  WM2 0
WoM, 0 WM,
[ WiMy wgMs 0|
Then, 6.11) can be written as
0
0
0
0
0
W 0
H{S Wer p — 0 =0 (6.20)
WC2 0
0
0
1
1
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or more succinctly as
W
F[w] =0 wherew = < W (6.21)
We2

This set of equations is analogous to the set of equatibrdd)(that a validi, must satisfy. The Taylor
expansion oH [wjw about some particular vectes; is

H [wjw =~ H [w;]w;j + 2H [w;j]dw+ ... (6.22)

The smallest change iw necessary to solvé(21]) is then calculated by setting the first-order expansion of
H [w] equal toc and solving fodw using the Moore-Penrose pseudoinverse:

ow = _%H/[Wj] (H [wj]H[wj]) " Flw] (6.23)

The next approximation fdris
Wjt1 = Wj + Adw; (6.24)

whereA is a stepsize less than or equal to 1. This iteration will usually converge quicklyAwith.

As noted in 85.4.], this algorithm only converges to solutions for whithH’ is of full rank.

However, valid solutions for the generalized bias linearization problem can exist ithdfés rank deficient.

This occurs if one row ofV is coincident with a zero eigenvalue of one of tlematrices. If this occurs,

several rows irH become identically equal to zero, ahtiH’ loses rank. In most cases where a solution

is sought numerically, there are no solutions for whidhH’ is rank deficient, and the algorithm works

well unmodified. The rank deficiency usually arises in situations where the actuator could be more properly
considered as a collection of smaller degree-of-freedom actuators rather than one higher degree-of-freedom
actuator. An example would be multiple sets of opposed horseshoes, each pair of which can be considered
an independent one-dimensional actuator. Even in this case, however, the algorithm can be modified so that
it will converge properly on solutions that have a singlthH’.

As the algorithm converges on a solution with a rank-defidieat the solutionH H’ becomes in-
creasingly poorly conditioned with each step. However, the algorithm can converge quite close to a candidate
W that nearly satisfies6(11) withoutH H’ becoming singular. Whehl H’ is judged to be effectively sin-
gular (that is, difference between the maximum and minimum singular values is greater than the computer’s
precision), the iterative scheme should proceed via minimizing7{ by a gradient descent rather than by
continuing with the modified Newton-Raphson scheme.

6.4 Analytical determination of W

In some special but practically important cases, manifolds of solution&/foan be obtained without the
need for a numerical search. Instances where this analytical scheme can be successfully used include sym-
metric radial magnetic bearings with an even number of legs but having arbitrary windings, and the magnetic
stereotaxis system.

Recall that any quadratic formed with an anti-symmetric marix equal to zero:

i'Ai =0 (6.25)

Proof: Sincei’Ai is a scalarj’Ai equals its own transpos&’Ai = i’A’'i. But sinceA is anti-
symmetric,i’Ai = —i’Ai. This can only be true for allif iA’i = 0 for all i.

Therefore, it can be concluded that the quadratic formed from a symmetric rivlasnd any anti-symmetric
matrix A is equal to the quadratic formed frakh alone:

i'(M+A)i = i'Mi +i'Ai = i'Mi (6.26)
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However,(M + A) can have very different properties frovh. In particular, arA might be chosen
such tha{M + A) has a lower rank thakl. For example, consider:

1 0 0 -1
w0 ] A8 o]
In this caseM is clearly of rank 2. However

1 -1
wea=|i 3]

The columns ofM + A) are clearly linearly dependent; the rank has been reduced from 2 to 1.
If an anti-symmetric matrix is found that produces a reduced fahk- A), the (M + A) can be
broken down into 2 components, each of which has lessihanws. Continuing with the previous example,

1 -1 1
weas[f <[ -
To denote this decomposition in the general case, the notation
(M+A)=BD (6.27)

will be used.

The existence of this decomposition is crucial to the analytical determination of bias linearization
currents. Using this decomposition, the quadratic force relations can be decomposed into a linear system of
equations with the quadratic nature of the problem encapsulated in an arbitrarily chosen vector that enters in
on both sides of the otherwise linear equation. For the example problem,

f={is iz}[ﬂ[l —1]{:;}

can be re-written as the linear system of equations

H —lQ} {:2}:{?}

whereq is an arbitrarily chosen number. The left-hand side of the equation can then be inverted to yield:

b=zl Sl

A manifold of solutions indexed bg has resulted. By choosirggto be any particular constant, a linear rule
for currents that realize any force results. By comparin@t®d), theW matrix associated with this solution

is
1
W = 119 g
2la -5
This result is just the same a8.8), examined earlier in the chapter. The arbitrary conggasinply indexes
all possible bias current levels.
The same sort of decomposition used in the one degree-of-freedom case can be used to determine a

manifold of solutions for more complicated problems. Consider a higher degree of freedom actuator charac-
terized by(My, ..., My). Assume that anti-symmetric matricgs, . ..,Ax) can be chosen such that

Q-

M1+ AL = B’Dl
: (6.28)
My + A = B'Dy
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The current-to-force relationship could then be re-written as

B q
q'D1 f1

iz (6.29)
' Dy fi

whereq is now an arbitrary vector rather than an arbitrary scalar. If the simultaneous rank reduction of
each matrix is ok or greater dimension, the left-hand side 829 can be inverted for ang for which the
left-hand side is non-singular:

q B
f /

i = GlgJ (GlqGlq") { | b where Glg = ) :Dl (6.30)
fi o Dk

Equation 6.30 is a family of linear inverses to the current to force relations indexed by the chaice of

The question then becomes: “when and how can a set of anti-symwetrédrices be chosen that
yields the decomposition ir6(28?” The ability to realize §.28) is intimately related to the existence oka
or greater dimensional totally isotropic space common tdatharacterizing a given actuator.

Theorem 6.2 A set of current to force realtions characterized by,M., My can be decomposed into the
linear form

fk
in whichG[g] has less than ore equal to n rows if and only if there exits a k or greater dimensional subspace
of currents i spanned by the rows of a matrix P that satisfies

P'M:P =0

P'McP =0

NecessaryAssume that§.29 can be realized. MatriB is then a rectangular matrix withrows
andl < n—k. LetP be annx (n—1) matrix whose columns are perpendicular to the row80fSuch a
matrix can always be constructed via Gramm-Schmidt orthogonalizatid8g. SinceP’B always yields a
zero result, ever’M;P = (P’BDP+ P'DB'P) = 0.

Sufficient:Let anti-symmetric matrix\; be

Aj = —P(PP) 'P'M; +M;P(PP) TP (6.31)
Then,
P'(Mj +Aj) =PMj—PP(PP)"'P’M; +P'M;P(PP)" TP =0 (6.32)
Now, define the matrix
G=[Mi+Af- Mk +A (6.33)

Note thatP’G = 0 due to the choice &&’s. Let the singular value decomposition®foe denoted

G=UAV (6.34)
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where the entries in each matrix associated with zero singular values have been omitted. S Ge-tie
U will have at mosth — rankP) rows. It can then be noted that defining

B=U (6.35)

and partitioning
[Di1]---|Dk] = AV (6.36)

yields the desired forn(29.

Corollary 6.1 A solution to the generalized bias linearization problem exists only if the current-to-force
relations can be put in the form 06.29.

Proof: If a solution to the bias linearization problem exists, the kestlumns oW are the basis for
ak dimensional totally isotropic space common toMls. These lask columns can be used as the matix
described in Theorei®.2; (6.29 can then be constructed via the “sufficient” part of this theorem.

Basically, if an isotropic space of dimensikior greater is known, a family of solutions to the bias
linearization problem can be found merely by the inversion of a small matrix. For the case of radial magnetic
bearings, to be discussed in detail in later chapters, high-dimensional totally isotropic spaces can be obtained
by inspection. For the case of the magnetic stereotaxis system, the derivation of the force-current relationship
serendipitiously leads directly to the decomposed fd@r29) (see &.2).

However, formulating the problem in the form &.29 has advantages even when a totally isotropic
space is not knowa priori. Even though a totally isotropic space must be found by a numerical search in
this case, the result is a family of solutions rather than just the single solution obtained by directly solving
(6.11) numerically.

To obtain a common totally isotropic space by a numerical search, it must first be noted that an
orthonormal basis?, for such a space must satisfy:

P'MiP =0
: (6.37)
P'MP = 0
PP=I

wherel denotes the identity matrix. MatrR must have at leagtcolumns, but higher dimensional spaces can
be sought by adding more columnsRoAn initial guess folP is chosen randomly, arféican be determined
by exactly the same modified Newton-Raphson iteration describe6.id §

In general, if there is one solution to the generalized bias linearization problem, many other solutions
also exist. Choosing the “best” set of linearization currents is a highly implementation-specific question and
is therefore addressed in subsequent chapters.



Chapter 7

Inverse Solution — Direct Optimization

In the previous chapter, the criterion for a desirable inverse was that the inverse should be easy to implement,
vis. a linear relationship between the desired forces and the required currents. However, requiring a linear
relationship between desired force and currents is overly restrictive; an actuator need not have a linear inverse
for all desired forces to be realizable. In addition, bias linearization does not necessarily yield an inverse with
optimal performance in terms of maximizing bearing load capacity or minimizing resistive power losses.

An alternate philosophy for choosing a particular inverse is to select the solution that optimizes some
measure of performance while also realizing the desired forces. For the inverse to be physically realizable, it
should also have the following properti€sre94:

e All currents must go to a nominal bias value when the force requested isHgiRrequirement avoids
the slew rate limiting problem at low force levels if the bias currents are appropriately selected (see
AppendixB).

e Coil currents should be a continuous function of forCehis requirement avoids jumps in required
currents that would cause slew rate limiting problems away ffemO.

e The algorithn{should belcomputationally quick and simpl&or a magnetic actuator to have adequate
bandwidth, the throughput rate must be fast. The time spent solving the magnetic inverse problem
should therefore not take up a large portion of the sampling interval in a digital controller implemen-
tation. An inverse computed off-line and stored in a look-up table for real-time used is assumed to be
adequate.

7.1 Formulation of the generalized direct optimization problem

A natural candidate for a cost function to optimizel’®i whereQ is a positive definite matrix used for
weighting the currents relative to one another. Minimizing this cost would give, in a sense, the smallest
current necessary to realize a given force. Another interpretation is that this cost function minimizes the
resistive power losses necessary to produce a given force. Using this quadratic cost function, the formal
definition of the generalized direct optimization problem is:

minJ(i) = i'Qi (7.1)

subjectto i'Mji = f;
i"Myi = fy
However, this formulation has an immediately apparent problem. At zero fiore8, satisfies the

constraints while at the same time producihg 0. SinceQ is positive definite, zero is the lowest possible

39
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value ofJ; i = 0 is clearly the optimal solution dt= 0. The requirement of a non-zero current at zero force,
necessary to avoid slew rate limiting, has been violated.
Consider instead the cost function

miin‘](i) = (i—i0)'Q(i — o) (7.2)

subjectto i'Mji = f;

iI'Myi = fi
wherei, satisfies the same conditions outlined iB6.8:

iMjio=0V j=1,...k

and the matrid[io] is of rankk where

ipM1
Hlig) =
ioMk

As shown previously by TheoreB?2, it is possible to control an actuator with finite current slew rate if and

only if such a vector exists. For this cost functidn= 0 andJ = 0 ati = io; current vector, therefore must
be the optimal solution afat f = 0. Away from f = 0, i, becomes increasingly insignificant in comparison

toi. Asi gets larger,
(i —i0)'Q(i —io) ~i'Qi (7.3)

The modified cost converges to the power-optimal cost for large

The problem defined by/(2) may be adequate if there is a way of solvifig?] that yields a smooth
inverse mapping. Perhaps the best way to produce an inverse mapping in this case is through a continuation
(or homotopy) approach. The optimal solution is knowti at 0. The idea is then to make small changes to
i that produce a non-zero force but still are optimal in the sense@.8f. (Similar techniques have been used
in the literature, particularly in the area of optimal power system studisgYJ83.

The first step in developing this approach is to combine the desired force constraints into the cost
function via scaling by Lagrange multipliers, denoted\bfFox71:

J= (i —i0)'Q(i —io) + N (HI[i]i — f}) (7.4)

The Lagrange multipliers can be thought of heuristically as representing a relative cost of satisfying the
constraints. For an optimum, the partial derivatived afith respect to botlhandA must be equal to zero:

2Q(i—io)+2Hfiji = 0

Hiili — f - 0 (7:5)

Equation 7.5) is known as the “Kuhn-Tucker optimality conditions.”

If a small change in force is desiredshould change in such a way that the change in force is
realized while still satisfying the optimality conditions. Ledenote the distance along an arbitrarily chosen
continuous trajectory originating dt= 0 in the space of desired forces, as illustrated in Figute A small
change in forces can be represented now byds

For the optimality conditions to be satisfied for a givefy/ds the total derivative of 1.5) with

respect tes must be zero: ) i
Q+ 35 1 AjM; H’[i]]{—'} {o
2 =171 dS b =1 gi (7.6)
Hi] 0 a T
Equation 7.6) is a system of ordinary differential equationssinOn the right hand sidel f /dsis
specified by the choice of path through #adimensional space df. The left-hand side can then be inverted
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f
2

Figure 7.1 2-d example of a trajectory out ¢f=0

at any particulai andA to yield the change in currents and Lagrange multipliers that correspond to any
df/ds An exposition by Bryson and HBH69] indicates that this integration yields the san@ndA for a
givenf regardless of path as long as the left-hand sid& @ (s always non-singular and the initial condition
is itself a minimum.
Initial conditions must be supplied so th&@t®) can be integrated. The initial condition on current is
i =igatf =0, sinceiy is the optimal solution to7.2) at zero force. However, the Lagrange multipliexs,
are also functions o, and an appropriate condition ammust also be supplied dt= 0. The value ol can
be determined by considering the Kuhn-Tucker conditiah§) @t thef = 0 point. Substitutingf = 0 and
i =io into (7.5) yields
2H'[ig)A =0
0=0
The constraint equations i.6) are satisfied at = 0 by definition ofi,. Recall that another condition ag
is thatH [io] must be of rank. An equivalent condition is that the columnstfii,] are linearly independent.
Since the columns dfi’[ig] must be linearly independent, no non-zero combination of columns can add up
to zero; onlyA = O will satisfy (7.7). The correct initial condition oh is thereforeh = 0 at f = 0 so that the
manifold tracked out of the zero force solution is an optimum. If some other initial condition is uskd for
a manifold will result that satisfies, the constraint equations; however, a manifold produs&g) by0 will
not be optimal in the sense of.Q).
An optimal inverse mapping is created by integratidds) numerically along many different paths
heading out of the origin, using= iy, A = 0 as the initial condition af = 0. For example, in a 2-force
actuator,f can be parameterized in termssdnd an angl® as

(7.7)

f1 = scosb

fo = ssin® (7.8)

The path is chosen so that the choic@afrresponds to the direction of the force, ambrresponds to the
magnitude of the force along that direction. To create an inverse mapgi®ywould be integrated from
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s= 0 to some desired maximum force at a great enough numlis eb that the inverse is suitably defined
in the range of forces of interest.

This method relies on the fact that the inverse has a finite slope with respetd wompute the
inverse; therefore, any inverse obtained by this method will have the desired property of smoothness along
each integration path. Unfortunately, it is not clear that the left hand side&fwill always be non-singular
for every possible set dfl's andiy's. However, as shown in examples in Chafethis method can give
smooth inverse mappings in the practically important case of 8-pole radial magnetic bearings.

7.2 1 degree of freedom example

As an example of the method, consider the 1 d.o.f. problem

f=1{i1 i) [é _01} {:;} (7.9)

m—{i} (7.10)

as a biasing vector. The cost function to be optimized is giverr b: (

For this example, one can choose

J=(i1—0)?+(i2—c)?>+N(i}—i3—1) (7.11)

wherec is a constant that scales the magnitude of the vector. Taking derivatives with respect emdA
yields the optimality conditions:

2(i1—C)—|—2}\i1 =0
2(i2—C)—2)\i2 =0 (7.12)
iZ—i5—f =0 (7.13)
Definef to be linear withs:
flg=s (7.14)

Now, taking the total derivative of the optimality conditions with respe&ytelds:

@+N) 0 i ] (B 0
2| 0 (1-)) -iz|q%i=70 (7.15)
i1 —io 0 (é_); 1

This system of ordinary differential equations is then integrated numerically, ysiagp = c;A = 0 as the
initial condition ats= 0.

The resulting currents fag are shown in Figur&.2. The required, is the same plot reflected about
f = 0. Several different magnitudes ofire considered: = 0.5,0.375 0.25,0.125,0.05. Asc goes to zero,
the solution converges ig = /T for f > 0 andi; = 0 for f < 0 — the solution from1.9) based solely on
power losses. As the magnitudeigfincreases, the high slopes arouhe- 0 are smoothed out, yielding
solutions that require greater current but are physically realizable.

7.2.1 Similarity between solutions for different magnitudes ofig

If (7.6) is solved for oné,, the solution for all other scalings of the saigecan be inferred by rescaling.
Consider the class of problems

miinJ(i) = (i —cio)'Q(i —cio) (7.16)



CHAPTER 7. INVERSE SOLUTION — DIRECT OPTIMIZATION 43

1 05 05 1

Figure 7.2 Solution for 1-d example at different bias magnitudes.
subjectto i'Mji = f;

"M = fi
Definecz=i and substitute to obtain

minJ(i) = A(z—io)'Q(z—io) (7.17)

subjectto ZMyz= f1/c?

ZMyz = fk/C2

By inspection of 7.17), one can conclude thafcio, f] = cilio, f/c?]. Note, however, that this similarity
applies only to actuators that have a linear B-H relationship. If the B-H curve is nonlinear, the current-to-
force relations cannot be reduced to the simiptei’ Mi that allows for the similarity.



Chapter 8

Bias Linearization—Magnetic Bearings

In Chapter6, a general representation of the bias linearization problem and several methods of obtaining
solutions were presented without any reference to a specific application. The present chapter will address the
application of these tools to the specific problem of magnetic bearings. First, the application of the analytical
solution method to symmetric magnetic bearings with an even number of poles is considered. It is shown
that all possible configurations of upme- 1 failed coils for a symmetric bearing witmzoils andn > 1 can

be decomposed into a linear problem of the form@R0). Since there are typically maW matrices that

satisfy the generalized bias linearization probl&i(), a criterion is then presented by which a bBastan

be selected.

8.1 Analytical solution for symmetric bearings

In 8 6.4, an analytical method was presented for solving for a linear inverse given the existence of a matrix
P that spans a totally isotropic space common toMilmatrices. In the general case, finding a va#id
necessary for this method is as difficult as solving for a Validia the methods addressed i68. However,
for symmetric radial magnetic bearings with an even number of poles, many different candidd®esdor
available by inspection.

Consider first the symmetric radial case in which each pole is wound with an independent coil and
the reluctances of iron sections of the flux path are assumed to be zero. ColuRnarmbe formed in at
least three ways:

1. The first way is by specifying currents of equal magnitude but different sign in two coils that gte 180
apart. This case is illustrated in FiguBeL In this picture, there are currents of opposite sign but equal
magnitude in coils 1 and 5. The result is that the only flux crossing from the stator onto the rotor goes
through poles 1 and 5. Since the poles are located opposite to one another, the magnetic stress on the
rotor integrates to zero. The columnRcorresponding to this case is

-1

[cNoNeol NeolNelNo)

2. The second way is to have equal currents in one set of opposed coils and equal currents of different

44



CHAPTER 8. BIAS LINEARIZATION-MAGNETIC BEARINGS 45

Figure 8.1 Flux resulting from opposite currents in opposed coils.

sign in another set of opposed coils, yielding a columPR of the form:

Again, the choice of current is such that flux only flows across the air gaps associated with coils that
are turned on. This situation is illustrated in Fig@&c&

3. Lastly, the vectof1,...,1}T produces no flux across any gap due to conservation of flux constraints.

A high-dimensional isotropic space can be formed by including each coil in an isotropic space formed by
either case 1 or case 2, and including the vector from case 3.
For example, in the 8-pole case, some vélichatrices would be

"1 0 0 0
O 1 0 o0 1
o 0 1 o0 1
o 0o o0 1 1
P=121 0 0 o0 1 (8.1)
0O -1 0 0 1
0 0 -1 0 1
0O 0 0 -1 1l
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Figure 8.2 Flux resulting from two sets of opposed coils.

rl1 0 0 I
0 1 0 1
0O -1 0 1
0O O 1 1
P= -1 0 0 1 (82)
0O 1 0 1
0O -1 0 1
L0 0 -1 1l
Tl 0 I
0 1 1
-1 0 1
0 -1 1
P= 1 0 1 (8.3)
0 1 1
-1 0 1
L0 -1 1]

Note that different ways of “using” the poles result in totally isotropic spaces of different dimensions. The
highest-dimension isotropic space can be achieved using the scheBnb igielding ann/2+ 1 dimensional

totally isotropic space for an pole bearing. Although a large number of different isotropic spaces can be
formed by the above method, it is also possible that there may be other totally isotropic spaces that do not
rely on the symmetries in case 1 and case 2; however, the above method yields a broad range of solutions.
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Figure 8.3 4 pole symmetric radial bearing.

8.1.1 Faulttolerance

Once a particulal is chosen, the quadratic current-to-force relations can be decomposed into the linear form
of (6.29:

B q
q'D1 f1

Tli=d (6.29
' Dy fi

using 6.34)-(6.36). The resulting form§.29) is a set of at most2 + n—ranKP]) equations fon unknowns.
If rank[P] > 2, this system of equations is underdetermined, implying a potential for fault tolerance. If a coil
fails, extra constraints can simply be added to this set of equation enforcing zero current in the failed coils.
For the biggest dimensioR matrix, P is of rankn/2+ 1, implying that extra constraints can be added to
account for the failure of up to/2 — 1 coils.

As a demonstration of the capacity for fault tolerance, consider the symmetric four-pole bearing
pictured in Figure3.3. Each pole has an areaafa nominal gap off,, and a coil o turns. For this actuator,

r 025 —-0.125 0 —0.1257
M, = ¢ —-0.125 0 0125 0
0 0125 -0.25 0125
L —0.125 0 0125 0
r 0 -0.125 0 01257
My — C -0125 025 -0125 0
y 0 —0.125 0 0125
L 0.125 0 0125 -0.25.
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where c is a constant containing the bearing geometry:
ar?

c= 2“0
%

One could select B of the form: 1 0

1
o 1 1
-1 0 1

0O -1 1
which would yield the corresponding anti-symmetric matrices §i82):

P=

r 0. 0.125 -0.25 01257
A —c -0.125 Q 0.125 0]
X 025 -0.125 0] -0.125
L —0.125 a 0.125 a |
r 0. —-0.125 Q 0.1257
A —c 0.125 a 0125 -0.25
Y 0. —0.125 Q 0.125
L-0.125 025 -0.125 0]

The matrixG = [My+ AMy + Ay] is then

025 0 -025 O 0. -025 O 025

G_oc -025 0 025 O 0. 025 O -025
025 0 -025 O 0. -025 O 0.25

-025 0 025 O O 025 O -025

A singular value decomposition & yields
B=[05 -05 05 -05]
Dx=c[05 0. —-05 0]
Dy=c[0. —-05 0. 0.5]
The linear equation analogous ®29) is then
0.5 -0.5 0.5 -0.5 q
0.5qgc 0. —-05gc 0. |i=< fy (8.4)
0. -05qc 0. 0.5qc fy

whereq can be chosen as any number that makes the left-hand side of full rank.8 Bysgecifies three
equations for four unknowns, leaving open the possibility of one coil failure. If, for example, the coil on pole
1 were to fall, the additional constraint

[1 0 0 Qi=0
could also be included irB(4). The solution is found by inverting the left-hand side 84 augmented by
the additional constraint:

0O 0 0 1 q
-1 & s )+
i: 7% q X
0 C—% (l) 1 fy
1 5 & 10O
TheW matrix corresponding to this example is

0O 0 O

-1 -1

9 g ©q

W= _2
G
9 T
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8.2 Numerical determination of linearizing currents in fault configu-
rations

The task of finding linearizing currents for a fault configuration can also be approached on a numerical basis.
Using the matriXK introduced in 8.18), the reduced order current vector can be mapped onto the full current
vector. In this case, the generalized bias linearization problem is

K IM)(K - '\7')(

- 8.5

for radial magnetic bearings. This problem is then solved using the numerical method preser@e in §

8.3 Asymmetric bearings

In the case of asymmetric bearings, there may still be linearizing solutions, even though the isotropic spaces
that lead to these solutions are not at all obvious. An example is the asymmetric bearing consid&réd in §
The bearing will be linearized if there can be foundsa®matrix W such thatg.11) is satisfied:

0
WMW = 0 | = My (8.6)
0

onNik O
o onNik

0
0
i 0

A suitable linearizing set of currents is then obtainable through the numerical search described in
8 6.3 For example,

WMW = = My (8.7)

o obIk

NFE O O

0.136293 —-0.314259 0610881
0.205067 —0.0433335 (233348
W= 0461968 —0.409403 067415 (8.8)
0.697068 0261145 —0.475498
—0.0278216 (27161 —0.15871

is one linearizing solution satisfyin@6) and @.7). The first column of 8.8) is the biasing current vector.
The second and third columns representXheandY — direction control vectors respectively. The physical
coil currents are then specified b§.12).

i1 = 0.604%, —0.1210f/i,

2 =
i3 =
is =
is =
i =

0.1497,
—0.0329,
—0.2574,
—0.5526,

0.0266,

8.4 Criterion for Optimal W

In general, the problem defined b§.{1) has many solutions. Therefore, a criterion must be established for

+0.2909% /i,
+0.0517fy/io
+0.4607fy/io
—0.1636fy/io
—0.2170f/io

+0.2996fy /i,
—0.5332fy /o
—0.2347fy /i
—0.7501fy /i
+0.3445fy /i,
+0.1516fy/io

(8.9)

selecting the best solution. While many possible quality measures can be devised, possibly the most useful
is the maximum load which the bearing can generate before magnetic saturation occurs at some point in the
actuator. Again, radial magnetic bearings will be considered in particular. It is, however, straightforward to
formulate the same type of cost function for more elaborate Maxwell force actuators.
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To determine when saturation occurs in the stator, the flux densities in the legs, back-iron, and
journal iron (denotedy, by, andb; respectively) must all be computed. If the pole areas are equal to the air
gap areas, then the pole flux densities are simply equal to the gap densities:

bp=b (8.10)
Most of the back iron flux densities can be found fromrhel independent conservation of flux conditions:
8 jPp j —ap jbp,j — @ j 110 j11 =0 (8.11)

The one remaining equation required is most properly obtained by applying Ampere’s loop law to the back
iron:

n
be,jlj =0 (8.12)
=1

wherel; is the length of thegi!" section. However, as the circuit begins to saturate, the permeabilities of
the back iron sections with higher flux density will begin to decrease. This will produce a redistribution of
flux density which tends to minimize the peak flux density in the back iron, subject to conservation of flux.
(Of course, as the iron starts to saturate, flux leakage will also increase, reducing the validity of the simple
conservation of flux conditions used here.) On the basis of this heuristic argument, it may be best to solve
these equations in such a manner as to minimize the peak flux density. The simplest approximation to this
kind of solution is provided by the Moore-Penrose pseudoinverse. SummariZe s

Using the Moore-Penrose pseudoinverse results in
by = Vi Vpbp, Vi = W (Vo7 )2 (8.14)

The journal flux densities can be computed in a similar manner, leading to

bp | |
bs={ by p=| VVp |b=| V'V, |Vi (8.15)

The transformation from the reduced order current vector to the distribution of flux densities throughout the

stator can then be defined as:
|

Vs= | VIV, |V (8.16)
Now consider the particular case of a 2 degree of freedom radial bearing. Rather than computing

the saturation load directly, compute the flux density distribution for a force of magnitude 1.0 and arbitrary
orientation®:

If the parameterg, ix, andiy are chosen according to

then the desired force of magnitude 1.0 and dired®amill result. The flux distribution throughout the stator
resulting from any selection @fand® is given by

4
bs[Z,0,W] = Ve = VW { €09/ (8.19)
sin®/C



CHAPTER 8. BIAS LINEARIZATION-MAGNETIC BEARINGS 51

The maximum magnitude of the resulting flux density distribution is
bmax({, ©,W] = [bs[L,0,W]e (8.20)

The achievable load capacity is then

Dsat >2
fnaxtl,O,W] = [ ———— 8.21
maX[Z ] <bmax[z, O,W] ( )
wherebs is the saturation flux density of the magnet iron.

The achievable load capacity is dependent upon the choi€ad®. Typically, it is conservative
to base the load capacity upon the worst case orientation:

bmas{C, W] = max|bs[Z, O, W]l (8.22)

This choice might be modified for systems where a gravity load or some other load with fixed orientation is
significant. Further, the choice @fis essentially free: it is the square root of the ratio between biasing field
and control field and has no effect on the magnitude or orientation of the field generated. This parameter
should be chosen in such a manner as to minimize the peak flux density (and thereby maximize the load
capacity):

Bmax{W] = rr}inmgx|bs[Z,G,W]|m (8.23)

In this manner, the best solutidv* is that which minimize®may (or maximizesfmay):

= i i o .24
bmax Wrnw mzmmgx|bs[Z,O,W]| (8.24)

The minimax problem defined bg.24) along with the constraint equatio.(1) forms a nonlinear
optimization problem for selecting W. However, it is unlikely that a single gradient descent optimization will
yield a global optimum because the solutions for W are not necessarily connected. For symmetric radial
bearings with an even number of poles, manifolds of solutions can be obtained analytically. The task is
then to find the particular manifold and arbitrary veajdhat gives the best performance relative 832¢).

A globally optimal solution is still not guaranteed, because it is possible that theylfeshd on the best
manifold found is only locally optimal, or that the global optimum might lie on an unconsidered manifold.

8.5 Optimization of W on the basis of maximized load capacity

The criterion for an optimalV presented in 8.4 can be combined with the method presented th3for
obtaining feasible solutions to yield a locally optimal solution. The simplest way to proceed is to repetitively
apply the procedure in 8.3 starting from different randomly generated seeds to obtain many feasible solu-
tions for the bias linearization problem in question. Then, on the bas&2(the W is picked that delivers

the best bearing load capacity.

An alternative procedure that tends to yield better solutions is to use the modified Newton-Raphson
method to first yield a feasible solution, denotegl It can then be supposed that there is a manifold of
solutions connected to the feasible solution. The idea is to then move along this manifold of solutions in
a direction that improves the quality of the solution. Movement should proceed along this manifold until
further moves do not improve the quality 0f. This procedure is known as theduced gradient method
and was first developed ilC69].

Recall that the conditions thef must satisfy can be written as

W
Fw] =0 wherew= ¢ W (6.2)
We2
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The first-order Taylor expansion Bfabout aV that satisfiesg.21) is then
Fw] ~ 2H [wo|dw+ . .. (8.25)

If a small change away fromy,, denoted bydw, is made that is orthogonal to each rowHrw], the change
in F[w] will be very close to zero.

Using Gramm-Schmidt orthogonalization, one can create a mdgfi/] whose rows are orthonor-
mal and orthogonal to the rows bf [w]. In a region local to feasible solutiom,, the manifold of solutions
can be approximated by

W= Wo+ Hov (8.26)

wherev is a set of coordinates that parameterizes the local solution manifold. The task is to find a direction
in the space parameterized byhat gives the best improvementhpax.

Since thebma W] cannot be differentiated analytically, and since the gradielgfw] with respect
to w may be discontinuous, the best way to find a direction that imprbyggw] is approximating the
gradient,0bmax/0v by two-point numerical derivatives. This approximation may not yielditestsearch
direction, but it should yield a direction that improugga,w]. Once an approximabmay/dv is computed,
a neww, denotedw, is created by a step along the gradient direction:

abmax
ov

wherec is a small number controlling the length of the step. Typicallghould be chosen such that the
length ofc"%%X is small compared to the lengthwaf (< 1%).

Vectorwi, may not, however, satisfy[wi1] = 0. Thereforey; should be used as the starting point
of a new modified Newton-Raphson search. Typically, only one or two Newton-Raphson steps are necessary
to bringw back onto the solution manifold. The entire process is repeated until additional steps along the
solution manifold bring no improvement (or only trivial improvementshig.

The above procedure has been used successfully to find locally optimal solutions for each failure
configuration for an 8-pole radial magnetic bearing for up to 3 coils failed. These solutions are detailed in
AppendixA. A program that implements the reduced gradient search is included as Appehdix

W]_:WO—C

(8.27)

8.6 Modification of W with change in position

Up to this point, the position of the rotor has been assumed constant. If the rotor is allowed to change position,
the force-to-currentrelationships vary as well, as describe®i8.§ortunately, if a set of linearizing currents
is known for the centered position, it is relatively easy to compute position-dependent corrections to these
currents via a continuation strategy. Consider the radial magnetic bearing for whlichhatrix has been
chosen that satisfie8.6) and 8.7): R

W My[X, y]W — My =0

WMy [x,y]W — My =0

Assume that a matriW([0, 0] has been chosen so that these equations are satiskedyt 0. The change
in these equations with respect to position should then be equal to 2w, if] is correctly chosen:

ow’ ow O0My

ow’ oW oM
o W WMy — +W’a—xyw =0 (8.29)

These equations represent 12 linear conditionsoWgox must obey so that the bias linearizing conditions
are still satisfied. For small displacements, it is sufficient to lineaizeboutx = y = 0. In this case, the
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current as a function of position as well as force is approximated as

ow iAO.A
W+ X— +y— f1/lo (8.30)

ox ay fo /i

2/|o

To find % and BMy (8.28 and 8.29 should be solved using a Moore-Penrose pseudoinverse to yield the
smallest possible changeswhthat still satisfy the generalized bias linearization conditions.



Chapter 9

Direct Optimization—Magnetic Bearings

Consider a brief re-examination of the motivation behind the direct optimal method for magnetic bearings.
For generality, an 8-pole bearing witth turns wound on each leg and adjacent coils connected in a series
configuration can be represented non-dimensionally using

b
b= — 9.1
b=~ (9.1)
. poN).
= I 9.2
h (gobsat ( )
o)
f=( ——5 | f (9.3)
- <008<ﬂ/8)ab§at
For each force direction
411 0.

With this particular non-dimensionalization, aof 1 induces the saturation flux density in the legs. The
highest load is then attained by= 1 andi, = 0, yielding a non-dimensional force éf= 1. To realize this

maximum load with a bias linearization scheme, the bearing is bias}adwatsaturatian flux density:

1 1
— 4 9.5

Iq 2+2_ (9.5)
1 1

:———f

L=5731

Although this bias flux level is necessary to get the maximum load, it may exceed the minimum bias necessary
to avoid slew rate limiting. Either load capacity or efficiency (in the sense of resistive power losses) must be
sacrificed.

The aim of the direct optimal method is to simultaneously achieve both aims by redlizirgwith
the smallest possible currents that satisfy slew rate constraints and by minimizing the currents required at
high forces to achieve acceptable load capacity. For the simple 1-d case, Figure 299 compares the currents
required for bias linearization to the solution fora 0.25 bias level from §.2 Substantially lower current
levels occur around zero force, and the maximum force of 1 is realized with a current very close to the optimal
value of 1. The savings are more apparentin Figuea plot of power loss for each scheme. Although both
schemes perform about equally well at high force levels, the direct optimization result is much better at the
low force levels, with only one quarter of the power required of the bias linearization scheme at zero force.

54
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Figure 9.1 Comparison of bias linearization and direct optimal method in a 1-d.o.f. actuator.

9.1 Choice ofig

The bias vectorig, is necessary to avoid slew rate limiting near zero force. In a 1-d.o.f. actuator, choice
of a bias vector is relatively obvious. For more general actuators, there are many possible candidates for
Some criterion must be defined by which a particidaran be chosen. One way of rating the efficacy of a
particulari, might then be on the basis of the worst slew rate required to move away frofm=th& point.

At f =0, the slew rate for the worst direction is easy to compute. At this pomt Lagrange multipliers,
equal to zero, making disappear from the left-hand side Gf.§). The solution 1‘ordt is then given through

the Moore-Penrose pseudoinverse:

di —1py/ -1 /71df
— =Q H'HQ )= 9.6
G = Q H/(HQ M) (9.6)
For the worst possible direction,
df
I IR CRC Rl ©.7)
2
The most desirablg would give the smallest possibdg/dt per unit length ofy:
min 6[Q *H'(HQ *H") Y] (9.8)
lo
subject to igio =1
For the case whel® =1, (304) reduces to
min —— (9.9)

io O[H]

subjecttoigio =1
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Figure 9.2 Power loss for bias linearization and direct optimization in a 1-d.o.f. actuator.

Once a particular direction fag is chosen on the basis of (304), a magnitude must be selected that yields a
high enough maximum slew rate it= 0. From AppendixB, a sufficient condition for realizable slew rate is

di
dtj|,
The maximum force slew rated f/dt|max should be a design specification of the actuator based on the

maximum force that the actuator is desired to produce at each frequency. ComBidingr(d (303) gives,
for realizability

Vo
o[L]

< (B.4)

Vo |d f/dt|max
0 > P /7 imax 9.10
5~ cah] 90
wherec is the magnitude associated with a unit veétorH = HJip] andQ is assumed to be the identity
matrix. Solving forc, _
. |d f/dt|max0][L]

> Voo[H] (9.12)

9.2 Symmetric 8-pole bearing

Of practical interest is the performance of the direct optimal solution on an 8-pole symmetric bearing. The
non-dimensionalization for a general 8-pole bearing and the matrices characterizing the arrangement are
detailed in AppendiXA. For comparison with bias linearization, the direct optimization solution can be
contrasted with the all-coils-active bias linearization presentedAri gL

The two obvious candidates forare of the form{1, -1,1,-1,1,-1,1, -1} " and
{1,1,-1,-1,1,1,—1,—1}T which correspond to the NSNS and NNSS biasing schemes typically used in 8-
pole bearings. Of these two options, the NSNS scheme has been observed to yield consistently lower power
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Figure 9.3 Coil 1 in an 8-pole bearing

losses and maximum flux densities in the stator when useg #serefore, the NSNS will be exclusively
considered here.
For the 8-pole bearing, the optimization problem to be solved is

mind (i) = (i —i0)'Q(i —io) (7.2
|
subject to iI'Mqi = f1
i"Myi = fi

where io=c{1,-1,1,-1,1,-1,1,-1}7

The particular scaling = 0.25 is about half of the bias level used by the 8-pole bias linearizatiomirl &.
This optimization leads to the set of ordinary differential equations

Q+3 AM; HI]fd) _ [0
ST o' [{§}-14) (79

with the initial condition =i, A = 0. Although more elaborate methods exist, the Euler method was found to
be adequately accurate for integrating these equations|frpm0 to | f| = 1. A shortMathematicgprogram
used for performing the integration is included in Appendi8. Because of symmetry it is sufficient to
consider the mapping between force and current for only one coil. For coil “1”, illustrated in Fditee
results of the integration are shown in Fig9rd. For comparison purposes, the equivalent mapping between
force and current for the bias linearization scheme is shown in F@GréJpon inspection of Figur8.4, it
can be seen that the direct optimal scheme realizes forces by trying to “pull” only with the coil closest to the
direction of the force. The result is substantially lower power consumption. A plot of resistive losses for the
direct optimal scheme is shown in Figu#e, and for the bias linearization scheme in Fig@ré The direct
optimal scheme starts at a low power level, and the losses increase linearly with force magnitude. The bias
linearization scheme starts at a high loss level, and the losses increase quadratically with force magnitude.

Even though resistive losses are greatly decreased by the direct optimization scheme, the cost func-
tion does not necessarily perform well with regards to maximum force before saturation. This measure of
performance is an infinity norm on flux density in the bearing, as shown previously. Because the direct op-
timal method causes one pole to create most of the force, saturation can occur at lower force levels than for
bias linearization with a carefully chosen bias level. Full back iron and journal iron must be used to avoid
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i Direct optimal force-to-current mapping, ¢=0.25

pre-mature saturation. For the above example with0.25 and assuming full back iron, a saturation flux
density is achieved &t = 0.713, compared with.D for the bias linearization scheme with full back iron. A
plot of load capacity before saturation as a function of bias lei@shown in Figuré®.8.

It appears that there is still some trade-off between load capacity and minimized power losses. There
are three options:

e Tolerate decreased load capacity resulting from the direct optimal scheme for an 8-pole bearing.

e Enforce an opposed-horseshoe winding for the bearing. The direct optimal scheme can be used on
each axis, per Figure 299, requiring slightly higher power losses but achieving the same load capacity
as opposed horseshoes.

e Extend the direct optimal formulation to include saturation effects. At high force levels, flux would be
redistributed away from the saturated sections, raising the bearing’s load capacity.
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Figure 9.5 Load optimal bias linearization force-to-current mapping

9.3 Direct optimal method including smooth saturation effects

Saturation effects can be included by two different methods. The first and most elegant way to include satu-
ration effects is to write a full set of nonlinear circuit equations for every section of flux path in the actuator.
These nonlinear equations are then incorporated as extra constraints in the optimization. The optimization
problem becomes:

J= miin(i —i0)'Q(i —io) (9.12)

b'Yib+f1 =0

b/Yzb—i- fo=0
Cib+Ch+C3i=0

b— BH[h =0

whereBH]Ih] is a function representing the virgin magnetization curve of the actuator material; afg,
andCs are matrices describing the magnetic circuit equations for the actuator. Each of the contraint equations
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is then combined into cost functidnvia Lagrange multipliers. The optimality conditions are then

0J
gfo
9 _ o
% _ o (9.13)
% _
an=0

A set of ordinary differential equations results from taking the total derivative.a8(with respect ts. The
initial condition is found by solving the constraint equations fortitadh that result from =i, and taking
A=0atf=0.

9.3.1 2-horseshoe example

As a simple example of including saturation by writing a set of nonlinear circuit equations, consider the
2-horseshoe actuator considered in Figau@ This example is analogous to one axis of a radial magnetic
bearing composed of horseshoes. The rotor will be assumed to be infinitely permeable, but each horseshoe
has aB — H relationship of

b = BH[h] = —0.15tant0.05h] + 1.8tank0.005h] + pch (9.14)

which is approximately the form of thB — H curve for a typical silicon iron. This equation is plotted in
Figure 321 The constraint equations for the optimization are:

hl+b12% _Nip = 0 (9.15)
Ho

hgl+b2%—Ni2 ~ 0 (9.16)
by—BHhy = 0 (9.17)
bo — BH[hy] 0 (9.18)

cosezf(bi—bg)—f =0 (9.19)

whered = 11/8,a= (0.01m)2, N = 100 turnsg, = 0.4mm and the iron length of each horsesholeds10cm
Each one of these constraints is then included in the cost function with a Lagrange multiplier corresponding
to each constraint equation. A bias level approximately one quarter of the way to saturation is

P 2o Psat -
IO_O'ZS(W) =2.62A (9.20)

with bsgr = 1.65 Tesla.

The initialb; andh; are approximatelp; = bsat/4 = 0.41T andhy = bsat/ (4% 5000p,) = 65.6A/m
in response td,. The exact initial condition must be found by iteratively solving the constraint equations
for f =0,i =iy given this guess for an initial condition. About 3 steps of a Newton-Raphson iteration are
needed to converge @ = by = 0.403,h; = hy, = 63.36. Taking the appropriate derivatives and integrating
from f = 0 to the maximum forcemax = 400N vyields the inverse relationship pictured as the solid line
in Figure 328. For comparison, the inverse relationship derived using a copstar8000 for the iron is
denoted by the dashed line. A rather abrupt deviation from the linear model can be noted near the maximum
force due to the saturation effects. However, the smoothness of the inverse mapping is maintained in the
saturation region.

Although this method of including saturation yields a smooth inverse mapping, it can be relatively
costly to implement in more general bearings. For each section of flux patharah, and two Lagrange
multipliers must be included in the vector of dependent variables to be integrated. For an 8-pole actuator, the
resultis 106 variables, implying the inversion of a 20806 matrix at each step. Although this dimensionality
is certainly not prohibitive, it may be unnecessarily inconvenient.
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9.4 Direct optimal method including hard saturation effects

A more computationally efficient way to include saturation effects is by imposing a set of inequality con-
straints on the flux in every part of the stator. The advantage of this approach is that the current-to-force rela-
tionships need not be broken down into their component equations to include saturation. The problem is still
amenable to a non-dimensionalized form, and the computational effort involved is only mildly greater than
without saturation. The form of the problem including these equality constraints is, for the non-dimensional
8-pole radial journal bearing:

minJ(i) = (i — i)' Q(i —io) (9.21)
1
subject to i'M1i = f1
i'Mapi = f;
Vsl —bsat <0
—Val —bsat <0

where ip=c{1,-1,1,-1,1,-1,1,-1}"
whereVs is the matrix developed ir8(16) that relates current to flux density in every section of the stator.
The inequality constraints simply enforce that absolute value of flux density is everywhere less than or equal
to the saturation flux density.
LetC4 denote the collection of rows & and—Vs corresponding to active constraints at a particular
step in the integration. Using just the active constraift21j can be written as a problem with only equality
constraints:

minJ(i) = (i —io)'Q(i —io) (9.22)
1
subject to i'M1i = f1
i'Mai = fp
Cai - bsat: 0

where ip=c{1,-1,1,-1,1,-1,1,-1}T

Including the additional equality constraints into the cost function with Lagrange multipliers yields the Kuhn-
Tucker optimality conditions:

2Q(i —io) + 2AM1i + 20 oM2i +CA3 = O
i'Mii—f; = 0
i'Md—fc = O (9.23)
Cai - bsat = 0
or more succinctly as
Full, f,A] =0 (9.24)

whereAs is a vector of Lagrange multipliers associated with the cost of the active constraints. Differentiating
with respect to the variabkedenoting force magnitude yields the system of ordinary differential equations:

di
2(| + 2A\aM1 + 2)\2M2) 2M1i 2Moi Cg dqls 0
2i'My 0 0 0|35 _)cosd (9.25)
2i'M3 0 0 0 % ~ ) sin@ '
Ca 0 0 0 dAg 0
ds
These equations can be represented more succinctly as
OF dx OF
el S .S 9.26
ox ds 0s ( )

wherex = {i,A\}T.
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In this case, the integration must be done in a more accurate way than the Euler method so that
constraints can be picked up and dropped appropriately. The integration of these equations should proceed in
the following way, similar to the “elevator predictor-corrector” method describeBGO3:

1. Startatf =0withi =iy, A1 = A2 =0. None of the inequality constraints should be active at this initial
point, soC, is empty, and\3z has a dimension of 0.

2. Take a prediction step via Euler integration:

OFa (X ) ~toRg ©.27)

x[s+dﬂ:x[s]+ds( I 35

3. Correct with a Newton-Raphson step to make sure that the Kuhn-Tucker conditions are satisfied ex-
actly:

0F«[X]
0X

wherex*[s+ dg represents the corrected valuexoét (s+ds). Usually only one correction step is
sufficient, given an adequately small step size

X'[s+ds = xis+dg — () 1Ry [x+ d (9.28)

4. Check for constraint violation. If constraints have been violated, add the violated constraijfs to
and add new elements ¥g corresponding to the newly imposed constraints. The value of the new
elements oh3 is estimated to be 0, since the inequality constraints are close to being met. A series of
Newton-Raphson steps should be taken 9i@®) to accurately determine the values of the new entries
of A3 with the newly imposed constraints in place. Again, usually one Newton step is sufficient to
correct.

5. Check for newly inactivated constraints. If an elemeniinbecomes negative, the constraint does
not impede progress and should be taken out of the list of active constraints. A Newton correction
step should be taken when a constraint is dropped to make sure that the Kuhn-Tucker conditions are
precisely satisfied.

6. Repeat, taking another Euler prediction step.

This procedure has been applied to the non-dimensionalized 8-pole bearing described in A@pendix
The source code used to implement the procedure is included &s Bhequality constraints were applied so
that the flux density in any pole is limited tb| < 1. A bias level ofi, = 0.25% {1,-1,1,-1,1,—1,1, —1}T
is employed, identical to the unsaturated case considered earlier. The resulting inverse mapping is pictured
in Figure9.12 Again, only the mapping for the coil on pole “1” is pictured, since the mappings for other
poles are merely rotations of this one. Comparing to Fi@uethe inverse with saturation loses some of its
smoothness as the saturation constraints are imposed. However, the mapping is still continuous with finite
slope, and therefore realizable. The full load realizable by the bias linearization schemd)) has been at-
tained in every direction. Power loss, pictured in FigirE3 is only slightly worse than in the unconstrained
case.
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3 Direct optimal resistive losses
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Figure 9.8 Load capacity versus bias level for direct optimal method.
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Figure 9.9 2-horseshoe saturating actuator
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38 pole bearing with saturation—power loss.



Chapter 10

Coll Current Solution—Magnetic
Stereotaxis System

In Chapter4, the relationship between current and force was derived for the magnetic stereotaxis machine.
Besides merely solving this equation, currents must also be chosen so that the magnetic seed is aligned in a
desirable direction. Generally, the seed is prolate, and the magnetization is aligned along the major axis. If
a catheter is pulled, it is attached on one of the ends of the major axis. To minimize tissue damage, the field
and force should be directed along the same line so that the seed presents the smallest possible profile and
minimizes damage to tissue. Misalignment between the force and field vectors is called “skidding.” Although
no skidding at all is desirable, the currents required to realize this constraint are often unacceptably large.
However, some skidding might be tolerable in exchange for lower current requirements. Three scenarios are
therefore considered which impose different constraints on the amount of skidding allowed.

Three different scenarios will be considered; each approach considers different constraints on the
seed orientation.

1. Unlimited Skid SeedSince the seed attitude is not constrained, the desired force can be created with
the dipole oriented in any position. This configuration represents the most economical force for current
case, since the best dipole orientation can be used.

2. No Skid Seedrl'he seed is prolate with the magnetization aligned along the major axis for this case. To
cause the least damage to tissue as the seed moves, the dipole must be anti-parallel to the desired force
direction.

3. Limited Skid Seed'he seed is again prolate. However, misalignment (skidding) bounded by a specified
maximum angle is tolerated in exchange for a solution requiring lower currents.

10.1 Unlimited Skid Seed

The problem of producing an arbitrary force on the seed is now that of findinthai satisfies4.12):

yi'Mji
VI'B'Bi

for an arbitraryf; seed orientation is of no particular concern. Generally, there exist many padbiisat-

isfy (4.12), since 4.12) represents three equations for six unknowns. This implies up to a three-dimensional
manifold of solutions for. More equations must be specified to rate the desirability of the valid solutions so
that the most efficient solution is chosen.

fj = (4.1

69
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One possible measure of solution quality is cost fund@on
C= 1 (10.1)
Vi'B'Bi '
Minimization of C over the set of that satisfies4.12) is a trade-off between minimizing the currents needed
to produce a force and strongly aligning the seed. In the transformed coordinates,

i — \1/\/|/B/B| 4.13
The cost function to be minimized is:
J=11 (10.2)
subjecttoiMji=f;; j=1,2,3

Eqg. (10.2 is the same form minimized by the direct optimal method in Chapt8ince there is a substantial
threshold force that must be overcome before motion occurs, force levels need never be lowered entirely to
zero. Slew rate limiting around zero force is a non-issue,igrd 0 can be used. lif, =0, it is easy to

see that the optimal current for realizing a force at one magnitude scales linearly to produce optimal forces
of the same direction but different magnitude. Determining a path frea0 is then determined solely by
computing the optimal currents necessary to produce a unit force in a given direction. The cost function that
must be minimized is then

w

J=11+§ A ('MjI = fj) (10.3)
=1
Conditions for an optimum are then
|+()\1M1+)\2M2+)\3M3)f = 0
I,Mll — fl =0
I'Mo1 — f5 =0 (10.4)
I/M3I — f3 =0

Equations {0.4) are a set of 9 equations for 9 unknowns. This system can be solvéaiforA using a
Newton-Raphson iteration starting from a randomly chosen s€lte continuation approach is not manda-

tory in this case because only a single set of currents is desired, rather than a continuous manifold. However,
a solution found via Newton-Raphson iteration is not necessarily a global minimum; it could also be a maxi-
mum, a saddle point, or a local minimum. It is therefore necessary to solve several times starting from several
starting points to make sure that the actual minimum is found.

10.1.1 No-Skid Seed
Recall the current-to-force relationship:
fj = I/B/Djl (4.19

Both theB matrix and allD matrices have at most 3 rows. By virtue of the way that these equations are
derived, they naturally fall into the form 06(28). Eq. @.14) can be directly transformed into the decomposed
form:

B q
'D f
g,D; - f; (6.29

q'Ds f3
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In terms of physical currenisthe decomposed form is

B
b
w1 f,
D, |17 1 (10.5)
lb/Dg f3

[bi

This time, however, the decomposed form has a meaningful physical interpreBiitigpecifies the direction
and magnitude of the flux density at the seed location. Since it is assumed that the seed turns to align stably
with the field direction, the direction @i also specifies the alignment of the dipole.

The “no-skid” constraint additionally requires that the dipole must be stably aligned along the di-
rection of motion. As a matter of conventian,is chosen to be anti-parallel fan the stable configuration,
implying thatb should also be anti-parallel fo This convention has been adopted because it matches the
design of existing seeds used for pulling catheters in the MSS. However, the solution for the opposite conven-
tion is easily obtainable. The quadratic form df12 guarantees that the same force is produced regardless
of the sign ofi. However, from 4.5), a change in the sign ofesults in a reversal of field direction. The same
force is produced, but the stable dipole orientation is rotated.180erefore, the negative of the solution
under the present convention is the solution for the same force resultétiably oriented parallel tb
rather than anti-parallel.

From (L0.5), f goes linearly with current. It is then sufficient to consider diglya unit force in
the desired force direction. All other force magnitudes can be achieved by a linear scaling of the currents
required forfy. If the seed is properly aligned,

m = —Yfg

b = -—afy (10.6)
wherea is some presently unknown but positive real number, ensuring that the seed is stably aligned. This
orientation is pictured in Figurg0.1

For ease of notation, define

m'D;
m'D,
m'D3

We can substitute fronlQ.7) and @.5) to form the following system of equations that is lineatr:in

{ D[%[;]yfd] ] = { —defd } (10.8)

D(p,m = (10.7)

or more concisely as

. _ D[pv _yfd] — fd
Gi=d where Gip,fq] = { Blp] ] and dfa] = { _afy } (10.9)
if the seed is properly aligned and the correct force is produced. For a given position specifieshthya
desired force directiofy G is a uniquely determined:66 matrix. If G is nonsingular, the set othat satisfies
(10.9is
i = G ld[q] (10.10)
However, an appropriate value farhas yet to be determined. The only constrainbois that it
must be positive so that the stable alignment of the seed matches the attitude assur@edl fior forming
F. (If a is negative, the stable orientation rotates by°l&danging the sign of thE matrix. The resulting
force is then the opposite of the desired force.) Any arbitrary positiveorésila valid solution, but some
solutions are more economical than others to realize. One way to cbideseich thatr minimizesi’i over
the set of valid. Equation £0.10 can be directly substituted into cost functidin

i'i =d[a]’(G1/G d[q] (10.11)
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Figure 10.1 MSS seed in stable no-skid orientation.

Equation (0.11) is a quadratic in one variabla, The extremum of this quadratic must be a minimum since
i"i goes to+-0 asa goes totoo.
Perhaps the simplest closed-form representation of the optimaés the singular value decompo-
sition [HJ89 of G:
G=UAW (10.12)

U andW are rankG| x n orthonormal matrices\ is a diagonal matrix of dimension rait) whose entries
are all greater than zero and are arranged in non-increasing order. The rowepfesent a basis for the
output of Gi, and the diagonal entry corresponding to a rolJofepresents the inverse “cost” of realizing a
unit output parallel to that column. Substitutiri(12) into (10.11) and minimizing with respect to yields:

S A 0
(% O}U/\ZU{fd}

Oopt = 0 (10.13)
{0 ) JUA2U { ; }
There is, however, no guarantee tbgg: is positive. Parameter should then be chosen as
a = maxdopt, Omin] (10.14)

whereanmin is an arbitrarily chosen minimum acceptable positive value, thereby ensuring that the dipole is
properly oriented and adequately aligned.

In certain pathological case§ is not invertible. These instances most often occur along lines of
symmetry. For some of these cases, however, an answer satistyiri@yhay still exist. IfG is of rank 5
rather than of rank 6 (and therefore singular), mdttixhat forms a basis for the output @i is not square.
The cost to realize an output with any component orthogonal to the rolkisftherefore infinite. For a
solution to exista must be picked so that{a] is spanned byJ (the vectord must be perpendicular to the
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@ (10.15)
{5

whereu is the vector orthogonal to the rows 0. If (10.15 yieldsa > 0, a solution that satisfies the no-skid
conditions (and is perpendicular to the unrealizable space of outputs) exists. It is also interesting to note that
dopt (10.13 converges to0.19 asG becomes singular.

In the singular case, there are multiple ways to produce any realizable output, since there is a six-
dimensional space of inputs and a five-dimensional space of outputs. It can be shown that the most efficient
way (in ani’i sense) to produce the solution for the singular case is

unrealizable output vector):

0=udla] = o=

i=W/'AtUd[q] (10.16)

wherea satisfies 10.15.

10.1.2 Limited-Skid Seed

Under limited skid conditions, some misalignment betweeand—f is considered acceptable. In this case,

b is chosen so that the dipole is stably oriented at a small misalignmentfwitihe desired direction can

be thought of as the direction bfotated through some small angles about vectors perpendicilar to
Define a new reference frame E such that

€ N1
e ,=T¢ N2 (10.17)
€3 n3
where
€11 €12 €13
T= fa.1 fa,2 fa,3 (10.18)

(e12faz—e13fa2) (e3far—enfas) (e11fa2—eiafq)
ande; is some arbitrarily chosen unit vector such that

er1fgy +efyr+esfga=0 (10.19)
Unit vectorse; andes are perpendicular are is parallel to the desired force direction. Define
fq = (—sines)e; + (cose; cosen) ey + (Sine; coser)es (10.20)

Anglesg; ande; represent small rotations abajtandes respectively. Vectofy is fq misaligned bye; and
€2. With respect to the E frame:
—singy
fa(e1,€3) = T'{ cosejcose, (10.21)
SiNgj COsEn

Instead of 10.6), the conditions now required are

m = —yiy
b — —afy (10.22)

so that the dipole is stably positioned and misaligned with by a small amount. These conditions imply
the linear system

Gi —{ _Ldfd } where Gip,fd] = { D[Fé[;]vfd] ] (10.23)
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Figure 10.2 Magnetic Stereotaxis System.

The solutions for and an appropriate proceed exactly as for the no-skid case, given some arbitrary values
of €1 andes.
A convenient limit on the allowable skid is

€2 g3 <e2 ., (10.24)

wheregmaxis the largest allowable skid angle. A search can then be made over the allowable reggdarof
the most economical solution.

10.2 Examples

As a demonstration of the above solutions, the procedures will be appled to the Magnetic Stereotaxis Sys-
tem (MSS). Since each problem is posed over a five-dimensional domain space of independent variables
(consisting of seed location coordinates and two degrees of freedom to orient the force direction), an exhaus-
tive comparison under all operating conditions is impractical. However, merely examining several randomly
chosen points in the operating region is sufficient to reveal some of the character of each solution.

Before specific operating points can be tested, the general layout and specifications of the MSS must
be described. This machine consists of six large superconducting coils arranged on the faces of a flattened
cubical structure, as depicted in Figur@.2 A right-handed coordinate system is defined as shown in the
figure. Each axis of the coordinate system extends through the center of a pair of coils. The origin of the
coordinate system is located at the center of the machine. Fluoroscopes for sensing seed position are aligned
along theX— andY —axes, and the patient’'s head enters the machine alorif-thgis.

Due to ergonomic constraints, the coils centered orXtheandY —axes are identical, whereas the
two coils centered on the—axis are slightly flattened and closer together. The physical dimensions of these
coils are given in Tabld0.1 One seed employed in the MSS has a strength of 0.046.AThis seed is
a circular cylinder approximately 3 mm in diameter and 3 mm tall. Rounded plastic end pieces are usually
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Coil Dimensions

X,Y axes Z axis
Inner Dia. 28.00cm| 32.10cm
Outer Dia. 37.20cm| 41.10cm
Thickness 7.0lcm| 3.72cm
Distance between
coil faces 45.69cm| 29.38cm
turns/cnt 207.2 207.2
Max. current 100 A 100 A

Table 10.1 MSS Coil Dimensions

Point Force direction
{150, 7.40, -4.68|{-0.936, 0.338, -0.094
{2.88, 209, -289| {0.736, -0.624, 0.259
{-5.78, 0.28, -4.34]| {-0.101, -0.678, -0.727
{4.15, -7.29, 6.79 | {0.456, -0.234, -0.858
{5.00, 5.00, 0.0p| {0.707, 0.707, 0.0
{-3.30, -4.23, 5.04| {0.506, -0.046, 0.860

OO B W|N| |

Table 10.2 Test points and desired force directions

attached to decrease resistance to seed motion. More detailed descriptions of the device, associated power
electronics, and performance are contained3RB"94], [MRW95h and [MRW954.

The operating region of the MSS lies within a box that extends from -10 cm to 10 cm on the X-
and Y-axes and from -14 cm to 6 cm on the Z-axis. Inside this region, a set of four random points and
force directions have been chosen. Two more specifically chosen points are included because they represent
interesting special cases where (Benatrix is singular in the no-skid case. These points are summarized in
Table10.2

For the no-skid and limited-skid cases, there isrpiori basis upon which to assume the minimum
acceptable value af necessary to properly align the dipole. This value should most properly be determined
experimentally. In the absence of these experimental resyltswill be assumed zero arbitrarily, since this
is the lowest possible value for maintaining a proper dipole alignment once that alignment is achieved.

10.2.1 No-Skid Case

Under the No-Skid conditions, currents are determined by solving the linear equEii&n (The value of

the arbitrary parameter is chosen to be the greater of thethat minimizes 10.11) or amin. Each of the

points in Tablel0.2are considered under the No-Skid conditions, and the solution currents are summarized
in Table10.3 Examples (1.1-1.4) represent the typical solutiond@®8). Example (1.1) is found to require
enormously high currents, whereas other positions are less expensive. It is interesting to note that there is
no particular propensity fomyp: as solved by 10.13 to turn out positive. In three of these examples, the
arbitrary value ofxnin has to be imposed for a properly aligned solution.

In examples (1.5) and (1.6), ti& matrix of (10.8 is singular. These two are specifically chosen
because (1.5) is a well-behaved singularity, and (1.6) is ill-behaved. Example (1.5) is typical of singularities
in the MSS that arise from symmetry. These singularities occur when the seed is located on a plane of
symmetry and the desired direction of motion is also within the plane of symmetry. In these cases, the
G matrix is singular, but the unachievable space is perpendicular @cdllvectors, implying £0.15 is
uniformly satisfied for all alpha. The choice afis again arbitrary, and a good solution results. Example
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Currents, A/N
# -X +X -Y +Y -Z +Z Oopt
1.1| 20161 20165 1389 13041 14300 158D30.
1.2 | -3847 4082 5616 -1675 -990 639 40.7
1.3| -3735 -5304 -3057 -3112 -2348 -1571 0.
14| 6496 6580 5000 2805 2506 400R O.
15| 669 -16 669 -16 -1359 -1359 0.85
1.6 - - - - - - -4.18

Table 10.3 Coil currents, no-skid case.

i, A/N
1076
10~5i¢
1074
1073

Figure 10.3 2-norm of coil currents versus force orientation for example 1.2.

(1.6), however, does not yield a usable solution. WHEn 15 is solved for thex that yields an answer
perpendicular to the unachievable space, thi negative — the only realizable alignment of theector
with f has the wrong orientation.

If singularities such as (1.6) were a rare occurrence, a strategy would be to simply catalog and avoid
them. However, this is not the case. Every point has some directions that are singular or badly conditioned
in a MSS with six coils. For example, consider rotations of the desired force direction in (1.2). Let angles
€1 andg; represent rotation angles away from a nominal position, as detailed in S&6tibi2 Figure10.3
represents the 2-norm of the coil currents required to realize a no-skid force in the direction of (1.2) rotated
by €1 andes. From this figure, it is evident that even though the specific direction considered in (1.2) is

nonsingular and well-behaved, many other possible force directions produced from the same point are very
badly behaved.
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Currents, A/N

77

# -X +X -Y +Y -Z +Z Oopt €

2.1 1196 855 856 191 -477  -1717 0. 19.9
22| -431 1068 1721 154 -778 -16718.05| 19.9
23| -610 -2755 971 730 441 917 0.94| 8.49
243052 2709 1533 -1073 1994 1698 0. | 18.04
2.5| 669 -16 669 -16  -1360 -13600.85| 0.

26| 600 1282 -574 -2089 1214 577 0.97| 8.92

Table 10.4 Coil currents, limited skid case.

10.2.2 Limited-Skid Case

For the limited-skid case, a misalignment of up t8 Blarbitrarily deemed tolerable. Under the Limited-Skid
conditions, currents are determined by solvih@.23 on a fine grid of perturbed seed orientations inside the
allowable skid region. At any particular seed orientation, the solution only requires the inversionxod a 6
matrix. At each orientation, the value of the arbitrary parameterchosen to be the greater of thethat
minimizes (0.11) or amin. The orientation with the lowest requir@dis then chosen as the solution. Each
of the seed location and force direction pairs in Talde2is considered under the Limited-Skid conditions,
and the solution currents are summarized in Table 389.

In general, there is a marked improvement in the current levels required for a given force. For in-
stance, example (2.1) shows an order-of-magnitude decrease in the peak required current. The other examples
exhibit a similar improvement in performance. Only (2.5) remains unchanged; the locally most efficient ori-
entation is the no-skid orientation for this particular example. Of special note is example (2.6). In the no-skid
configuration, no solution existed. With less thar? d® misalignment, however, this example has a fairly
economical solution.

The improvements in solution economy rely on the fact that economical orientations are often quite
close to orientations that are prohibitively expensive to realize. In the particular case of (2.1), the no-skid
solution is quite expensive. In Figul®.4 it can be seen that the no-skid orientation (at the center of the
figure) lies very close to a ridge of singularities. By allowing misalignment, an attitude at the far edge of the
figure and away from the singularities is used.

10.2.3 Unlimited-Skid Case

The dipole orientation will now be considered unconstrained. Instead of simply solving linear equations, the
unconstrained dipole orientation requires the solutionl6f4). A Newton-Raphson iteration starting from
a randomly chosen set of currents was used to solve this equation. There are typically a finite number of
local minima (usually about five) to which this iteration can converge, so the iteration was run several times
to ensure a global minimum. The results for this scenario corresponding to the test points ihOl8kake
summarized in Tabl&0.5

As with the limited-skid case, the unlimited skid case produced a valid result for each case. The
current magnitudes are roughly equivalent to the results of the limited-skid case, but each example now has
ana of around 10; to realize thesenin of 10 in the limited skid case would increase the required current
magnitudes, possibly considerably.

A similar solution to the unlimited skid case would be obtained by applying the limited-skid condi-
tions overe’s ranging from—18C° to 18C. The value ofomin would again be explicitly chosen, an option
that does not exist in the quadratic formulation.
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Figure 10.4 2-norm of coil currents versus dipole orientation for example 2.1.

Currents, A/N

# -X +X -Y +Y -Z +Z Oopt €
3.1|-1832 -273 69 1116 1025 226 9.73 | 90.58
32| 135 -1442 1334 -251 -226 229D 9.08 | 103.68
3.3| 362 -298 1537 -277 -953 -784 8.69 | 83.7%®
3.4 -1132 942 -1423 993 2210 -72416.78| 57.8F
35| -31 -849 31 849 0. 0. | 8.09 90°
3.6| -459 1439 254  -297 91 -1186 10.8 | 118.02

Table 10.5 Coil currents, unlimited skid case.
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Chapter 11

Conclusions

This dissertation has presented a general form for considering the magnetic inverse problem in magnetic
actuators. Specifically considered were inverse problems that have a homogeneous quadratic relationship
between applied current and resulting force. Typically, many possible inverse mappings exist. The task is
then not only to find an inverse, but to find, in some sensdyeisénverse. Two different methods of inverting

the current-to-force relationship were considered based on different definitions of an “optimal” inverse:

e Ageneralized bias linearization approach. Necessary conditions for bias linearization were considered.
A numerical method for finding linearizing currents was developed, and an analytical method that can
be used in some special but practical cases were also presented.

e Adirect optimal method for minimizing a quadratic cost on the input currents. A continuation method
was presented for solving this optimization problem. Extensions to the case of a saturating actuator
were developed.

These methodologies were successfully applied to the specific examples of magnetic bearings and the mag-
netic stereotaxis system.

Several important results come from the application of these methods. The first is that magnetic
bearings can be made fault-tolerant through the use of generalized bias linearization without any physical
design change in the bearings themselves. This result may be crucial to the use of magnetic bearings in
aircraft engine applications, where fault-tolerance is required.

The direct optimal methods may also be important to specific magnetic bearing applications. In
precision applications, changes in physical dimensions due to thermal expansion may be unacceptable. The
direct optimal methods keep power losses as small as possible while still achieving maximum load capacity.

The methods developed in this dissertation are also an important step in the development of the
Magnetic Stereotaxis System. Previous controllers relied on the fact that the seed was in the exact center of
the MSS so that the problem could be decomposed into 3 decoupled problems; however, this scheme breaks
down rapidly as the seed moves away from the center of the helmet. The generalized bias linearization scheme
as applied to the MSS is not limited to any specific coil geometry. This scheme implies that a MSS could
be readily controlled with many small coils located close to the head, rather than a few large coils located
farther away. The use of many coils would also help to eliminate the singularity problems that arise in the
present MSS along lines of symmetry. Acceptable currents might then be found for any seed orientation, thus
avoiding the need for “skidding” altogether.

Although not considered at length in this dissertation, the methods developed here could be used as
a valuable tool in evaluating the utility of proposed actuator designs. Actuators could then be designed to give
the best power loss performance or fault-tolerance in the case of magnetic bearings, or robustness to sensor
error and seed position variation in the Magnetic Stereotaxis System.

There are many directions of further inquiry in which the present work could be extended. Specif-
ically, the treatment could be extended to address the non-homogeneous quadratic current-to-force relation-
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ships that arise in machines employing permanent magnet biasing and in systems that are biased by gravity
loading.

As of this writing, only limited portions of the theory developed in this dissertation have been im-
plemented in hardware. A number of issues arising from implementation may need to be addressed. These
issues might include:

e Details of transition between sets of linearizing currents when failures are detected. There may be
problems with slew rate limiting during the transition.

e Robustness issues. Degradation of the inverse mappings in the presence of modeling errors has not
been addressed, and could be of concern. Specifically in the case of the MSS, sensitivity to errors in
the sensed position of the seed and to materials properties of the brain tissue have not been addressed.

With regard to bias linearization, several interesting theoretical questions remain unanswered. An
interesting line of inquiry might be the discovery of a way of deriving the equations for a device characterized
by magnetic circuits that yields a “natural” decomposed form, as occurs serendipitously for the MSS. Failing
that, a better way of finding common totally isotropic spaces rather than by either intuiton or numerical
search would be in order. Although tighter necessary conditions for linearizability have been developed in
the present work, useful necessary and sufficient conditions for linearizability have yet to be found.

The application of continuation methods to the magnetic inverse problem is new, and much extension
might be done with this approach. It would be interesting to attempt to prove that a continuation algorithm
started from a valid, does not run into a singular point. Although no ill-conditioned cases have yet been
encountered, it is not at all clear that the problem is well-conditioned for every device having one or more
valid iy vector. An interesting extension would also be the on-line integration.6fif terms of time, rather
than the artificial variabls. This might be included in some sort of feedback linearization controller and
eliminate the need for a look-up table.
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Appendix A

Symmetric 8-pole magnetic bearing

The symmetric eight-pole bearing (pictured in Figé&) currently is common in moderate capacity radial
bearing design; an examination of the characteristics of this design is therefore of great practical value.

To deal with this bearing in as general away as possible, it is desirable to define a non-dimensionalized
bearing. Define non-dimensional current, flux density, force, and displacement as respectively:

b
b= (A1)
. HoN .
o <gobsat)l (A-2)
Ho
f= f A.3
- (abgat) 9
_ XY .
*= %' Y Yo (A4)

wherea is pole areag, is nominal air gap, andll turns of wire are wound independently around each pole.
Analyzing the magnetic circuits for this non-dimensional bearing yields the following matrices:

g1 —g2 O 0 0 0 0 07
0 g -9z O 0 0 0 0
0 0 g3 -gs O 0 0 0
R_ 0 0 0 ga -0g5 O 0 0
0 0 0 0 g5 -9 O 0
0 0 0 0 0 o0 -9 O
0 0 0 0 0 0 g7 -—0s
L1 1 1 1 1 1 1 14
ri -1 0 0 0 0 0 07
O 1 -1 O 0 0 0 0
0O O 1 -1 O 0 0 0
N — 0O O 0 1 -1 O 0 0
0O O 0 0 1 -1 O 0
0O O 0 0 0 1 -1 0
0O O 0 0 0 0 1 -1
L0 O 0 0 0 0 0 0.
where . .
gj = 1—xcos<E+E> —ysin(EJr E)
J = 4 8) 2 48



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 85

Figure A.Z 8-pole symmetric bearing.

For the centered position, the flux in each gap is determined by

r. -1 -1 -1 -1 -1 -1 -17
-1 7 -1 -1 -1 -1 -1 -1
-1 -1 7 -1 -1 -1 -1 -1
-1 -1 -1 7 -1 -1 -1 -1
-1 -1 -1 -1 7 -1 -1 -1
-1 -1 -1 -1 -1 7 -1 -1
-1 -1 -1 -1 -1 -1 7 -1

-1 -1 -1 -1 -1 -1 -1 7

ey
]

S
I

TheM matrices for each force direction can now be built \Balé):

[ 0.346455  —0.0816602 —0.0338248 0 0 —0.0338248 —0.0816602 —0.115485
—0.0816602  0.143506 0 0.0338248  0.0338248 0 —0.0478354 —0.0816602
—0.0338248 0 —0.143506  0.0816602 0.0816602  0.0478354 0 —0.0338248

Mo = 0 0.0338248  0.0816602 —0.346455 0.115485  0.0816602 0.0338248 0

z= 0 0.0338248  0.0816602 0.115485  —0.346455  0.0816602 0.0338248 0
—0.0338248 0 0.0478354  0.0816602 0.0816602 —0.143506 0 —0.0338248
—0.0816602 —0.0478354 0 0.0338248  0.0338248 0 0.143506  —0.0816602

L —0.115485 —0.0816602 —0.0338248 0 0 —0.0338248 —0.0816602  0.346455

[ 0.143506  —0.0816602 —0.0816602 —0.0478354 0 0.0338248  0.0338248 0 b
—0.0816602  0.346455 —0.115485 —0.0816602 —0.0338248 0 0 —0.0338248
—0.0816602 —0.115485 0.346455  —0.0816602 —0.0338248 0 0 —0.0338248

M. — | —0.047835¢ —0.0816602 —0.0816602  0.143506 0 0.0338248  0.0338248 0

¥= 0 —0.0338248 —0.0338248 0 —0.143506  0.0816602 0.0816602  0.0478354
0.0338248 0 0 0.0338248  0.0816602 —0.346455  0.115485 0.0816602
0.0338248 0 0 0.0338248  0.0816602 0.115485  —0.346455  0.0816602

L 0 —0.0338248 —0.0338248 0 0.0478354  0.0816602 0.0816602 —0.143506 |

Position-dependence of these matrices can be approximated by the one-term Taylor series desgrd@ed in (
Necessities for computing derivatives of the force matrices with respect to displacement are the derivatives
of the reluctance matriR with respect to position:
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—cos g cos Sg- 0 0 0 0 0 0
0 —cos STTF cos 5T7T 0 0 0 0 0
0 0 —cos 5% cos % 0 0 0 0
@ — 0 0 0 —cos % cos 9? 0 0 0
oz 0 0 0 0 —cos QTTF cos 1}377 0 0
0 0 0 0 0 —cos 1%377 cos 1%77 0
0 0 0 0 0 0 —cos 1%77 cos Ltéﬂ'
0 0 0 0 0 0 0 0
—sin £ sin 3 0 0 0 0 0 0
8 8
0 —sin 3L sin 8T 0 0 0 0 0
0 0 — sin 5T7T sin 7T7T 0 0 0 0
oR _ 0 0 0 —sin ZX sin 2F 0 0 0
%y 0 0 0 0 —sin 8% sin 1T 0 0
0 0 0 0 0 — sin HTTF sin BTTF 0
0 0 0 0 0 0 —sin 137 5ip 137
0 0 0 0 0 0 0 0
The derivatives oMy andMy are then computed by substituting in&39) to yield:

[ 0.595971 —0.106694 —0.0183058 —0.0441942 —0.0441942 —0.0183058 —0.106694 —0.257583 7
—0.106694 0.154029 0.0441942 —0.0183058 —0.0183058 0.0441942 0.00758252 —0.106694
—0.0183058 0.0441942 0.154029 —0.106694 —0.106694 0.00758252 0.0441942 —0.0183058

OMy _ —0.0441942 —0.0183058 —0.106694 0.595971 —0.257583 —0.106694 —0.0183058 —0.0441942
ar —0.0441942 —0.0183058 —0.106694 —0.257583 0.595971 —0.106694 —0.0183058 —0.0441942
- —0.0183058 0.0441942 0.00758252 —0.106694 —0.106694 0.154029 0.0441942 —0.0183058
—0.106694 0.00758252 0.0441942 —0.0183058 —0.0183058 0.0441942 0.154029 —0.106694

L —0.257583 —0.106694 —0.0183058 —0.0441942 —0.0441942 —0.0183058 —0.106694 0.595971

[ 0.220971 —0.150888 —0.0441942 0 —0.0441942 —0.0258883 0.0441942 0 T
—0.150888 0.220971 0 0.0441942 —0.0258883 —0.0441942 0 —0.0441942
—0.0441942 0 —0.220971 0.150888 0.0441942 0 0.0441942 0.0258883

OMy _ 0 0.0441942 0.150888 —0.220971 0 —0.0441942 0.0258883 0.0441942

Ay - —0.0441942 —0.0258883 0.0441942 0 0.220971 —0.150888 —0.0441942 0
- —0.0258883 —0.0441942 0 —0.0441942 —0.150888 0.220971 0 0.0441942
0.0441942 0 0.0441942 0.0258883 —0.0441942 0 —0.220971 0.150888

L 0 —0.0441942 0.0258883 0.0441942 0 0.0441942 0.150888 —0.220971 |

r 0.220971 —0.150888 —0.0441942 0 —0.0441942 —0.0258883 0.0441942 0 T
—0.150888 0.220971 0 0.0441942 —0.0258883 —0.0441942 0 —0.0441942
—0.0441942 0 —0.220971 0.150888 0.0441942 0 0.0441942 0.0258883

OMy _ 0 0.0441942 0.150888 —0.220971 0 —0.0441942 0.0258883 0.0441942

ar —0.0441942 —0.0258883 0.0441942 0 0.220971 —0.150888 —0.0441942 0
- —0.0258883 —0.0441942 0 —0.0441942 —0.150888 0.220971 0 0.0441942
0.0441942 0 0.0441942 0.0258883 —0.0441942 0 —0.220971 0.150888

L 0 —0.0441942 0.0258883 0.0441942 0 0.0441942 0.150888 —0.220971 |

[ 0.154029 —0.106694 —0.106694 0.00758252 0.0441942 —0.0183058 —0.0183058 0.0441942 7
—0.106694 0.595971 —0.257583 —0.106694 —0.0183058 —0.0441942 —0.0441942 —0.0183058
—0.106694 —0.257583 0.595971 —0.106694 —0.0183058 —0.0441942 —0.0441942 —0.0183058

oMy _ 0.00758252 —0.106694 —0.106694 0.154029 0.0441942 —0.0183058 —0.0183058 0.0441942
Ay - 0.0441942 —0.0183058 —0.0183058 0.0441942 0.154029 —0.106694 —0.106694 0.00758252
- —0.0183058 —0.0441942 —0.0441942 —0.0183058 —0.106694 0.595971 —0.257583 —0.106694
—0.0183058 —0.0441942 —0.0441942 —0.0183058 —0.106694 —0.257583 0.595971 —0.106694

L 0.0441942 —0.0183058 —0.0183058 0.0441942 0.00758252 —0.106694 —0.106694 0.154029

A.1 Failure configuration bias linearization currents

In all, there are 93 different ways that a bearing can fail between 0 and 3 coils. All of these failures are,
however, described by only 11 unique failure maps due to the symmetry of the bearing; all other mappings
are simply rotations and permutations of these unique maps. If a “1” represents an active coil, and a “0”
represents an inactive coil, the unique configurations are:
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Coils On
11111111
01111111
00111111
01011111
01101111
01110111
00011111
00101111
00110111
01010111
01011011

[ z
RBoo~Noaswn kg

As explored in Chapter 249, an analytical method can be used to decompose the bias linearization
problem and yield manifolds of solutions. Alternatively, a purely numerical approach (the reduced gradient
method) can be used to solve for linearizing currents. Whichever method is used, the problem ultimately
becomes a numerical search. If the analytical method is used, it is noagbeari which manifold results in
the best solution. It is also not clear which arbitrarily chosen coefficiggisld the best solution. The best
g must be found by some sort of search. Because no method for finding an optimal set of linearizing currents
is clearly the most efficient, the reduced gradient method was used toWWhfdiaeach failure configuration.

A description and listing of the program that implements the reduced gradient method is givarRinF®r
the purposes of computirgynay the width of the back iron and journal iron was assumed té bee width
of the legs. This is a typical design for 8-pole bearings run witsd\ Sbiasing scheme.

With a typicalNSNScontrol scheme with all coils active and limiting saturation occurring in the
legs, the flux levels in the gap would be set%tdahe saturation level, implying the magnitudeict 0.5 in
each coil. The maximum load would then be approximately = 1.

Through use ofV that do not employ certain coils, the occurrence of faults can be tolerated. The
price for these failures is a decrease in bearing load capacity. The relative load capacity for each failure
configuration using the best discovel&dor each set and usin@® 1) to define load capacity is:

Relative Load Capacity
100%
100%
48.0%
44.0%
51.3%
56.5%
14.0%
26.0%
36.7%
41.0%
31.3%

[ Z
RBoom~Noo~wNRG

For each set of failure currents, the accompanying plot represents load capacity versus force orien-
tation. Active coil locations are represented by arrows on these plots. The reported load cépng;;iﬁg
load capacity for the worst force orientation, as specifiedBb3/4j.
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To converlV into dimensional units,

) 0
W=w.| o (abg—tN) 0 (A.5)
0 0 (abg—tN)

This conversion puts the first column\&finto units of current, and the second and third columns into current
per unit force. To achieve the optimal load capacity, the valug stfiould be 1.
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A.1l.1 Casel

<

X

r 0.505134 0457245 (01893971
—0.505134 —0.189397 —0.457245
0.505134 —-0.189397 0457245
—0.505134 0457245 —0.189397
0.505134 —-0.457245 —0.189397
—0.505134 0189397 0457245
0.505134 0189397 —0.457245

L—0.505134 —-0.457245 0189397

f = 0923782

—Mmax

89
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A.1l.2 Case?

Sa

90

-1.5 -1

<

\ 1.5}

1

/;
05

0.5
“1f

/ -15 \
r 0. 0. 0. T
—1.01027 —-0.646641 —0.646641
0. —0.646641 0267848
—1.01027 0 —0.378793
0. —0.914488 —0.378793
—1.01027 —0.267848 (0267848
0. —0.267848 —0.646641
L—1.01027 —0.914488 0 J

—Mmax

0.923782
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A.1.3 Case3

v
&

-1.5 -1 0 1 1.5
/ -O. \
1t
foas A

r 0. 0. 0. T

0. 0. 0.
—0.745322 —0.505285 —1.24809
W — 0.274924 —-1.19563 —0.482923

—0.500997 (0207802 (00736056
—0.30642 -0.270924 —-0.119114

0.333943 -0.576502 —1.28494

L—0.717777 —1.29388 —0.547609

f = 0443783

—Mmax
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A.1l.4 Case4

\ 1.5} /
1.
-15 -1 -0 5 1 1.5
_1-
/ -15} \
- 0. 0. 0.
0.4572 0829465 179418
0. 0. 0.
W | 0420565 142794 173208
—~ 7~ | -0.168895 0334289 178272
0.392786 —0.147955 —0.231423
0.1394 0922727 140995
| -0.263455 —1.18527 191783 |

f

—max

= 0.40625
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A.1l.5 Caseb5

<

1.
a1 - 5 1
_1-
VP
-0 0. 0

0.445917 (0731063 0828046
—0.420705 0727704 —0.623231
0. 0. 0.
0.527528 —0.640086 —0.0244798
—0.250088 0483385 082879
0.31721 0441614 —0.619126

L —0.48957 —-0.646243 (0180955 |

f = 0473622

—Mmax
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A.1.6 Caseb

1 L
-1.5 -1 0. 1 1.5
1t
foas A
r 0. 0. 0. T
—0.265606 —0.416743 —-1.28104
0.485629 (0102261 0146081
W — -0.3711 11636  —0.490013

0. 0. 0.
0.439899 -0.416743 —-1.28104
—0.299692 0102261 0146081

L 0.535831 11636  —0.490013

f = 0521902

—Mmax
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A.1l.7 Case7

—0.951079 —2.29611

\ 1.5} /
1.

. . N . .
15 -1 05 N1_N\ 05 1 1.5
/ -05 \

_1-
VP
-0 0. 0. -
0. 0. 0.
0. 0. 0.
W— —0.666665 (448349 —-1.53073

0
0 —0.951079 —2.29611
0. —0.951079 —2.29611

L—0.666662 —1.39943 —0.76538|

f = 0.129543

—Mmax
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A.1.8 Case8

\ 1.5} /
1.
~~ 05! —
15 -1 0.5 \\ >o.5 1 1.5
_1-
VP
) 0. 0. 7
0. 0. 0.
—0.710937 —0.234225 —-1.34591
W 0. 0. 0.
— | 0.241507 —-1.75379 —1.0097

0.162386
L—0.678722

—0.405378 —0.748979 —0.108603
—0.864742 —1.53023
—1.69752 —0.654697

f =

—Mmax

0.240411
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A.1.9 Case9

\ 1.5¢ /
1 L
-1.5 -1 -0 5 1 1.5
/ -0 \
_1 L
/ol N\
r 0. 0. 0. b
0. 0. 0.
0.700709 074353 154867
W— —0.128455 202657 0939184
- 0. 0. 0.
0.504082 0 0

—0.230737 074353 154867

L 0.589266 202657 0939184

f = 0.338875

—Mmax
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A.1.10 Case 10

\ 1.5¢ /
1 L
\ 0 /
-1.5 -1 -0 0.5 1 1.5
/ -0 \
_1 L
/ol N\
r 0. 0. 0. T
—0.691558 -0.618983 —-1.5709
0. 0. 0.
W— —0.691552 154853 —-0.673114
- 0. 0. 0.
—0.0887534 —-0.618983 —1.5709
—0.794338 0 0.
L —0.0887668 154853 —-0.673114

f = 0.378526

—Mmax
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A.1.11 Casell

-OE J 0.5 1 1.5
-O 5 \
_1 L
VA
-0 0. 0 7
—0.644074 —-1.05866 —1.11147
0. 0. 0.

—0.0497678 —2.14374 0963628
—0.658303 —-0.106088 0729123
0. 0. 0.
0.0724449 —-0.731037 —1.11456

L —0.542448 —2.25897 0623658]

f = 0.289147

—Mmax
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A.2 C code for determiningW via the reduced gradient method

A.2.1 Program findw.c

This program implements a reduced gradient method search for a locally op¢immltrix in the sense of
giving the highest possible load capacity. This program specifically addresses radial magnetic bearings in
which each pole has the same face area, nominal gap, and number of turns. This program treats bearings in
the same non-dimensional formulation developed earlier in this appendix.

The program first reads a data file, specified as a command line option, that describes the geometry
of the particular bearing in question. Then, a number of feasible solutions (specift@\bwAN¥are found
using the modified Newton-Raphson method. After the specified number of feasible solutions are found, the
best feasible solution is used as the starting point of a reduced gradient descent. The length of each gradient
step is specified b@radStepLength . A value of Q01 has been found to work well. A number of gradient
steps are taken until further steps bring no improvement in solution cost. The program is then terminated,
and the bestV found is reported along with the nondimensional load capacity associated witlv thiie
output is correctly scaled so that (451) can be used to convert the output to dimensional units.

Specific subroutines employed in the program are as follows:

GetMaxB This subroutine takes a set of linearizing currents and a specific biasing level and returns the
absolute value of the worst-case flux density oveBalksulting from a force of magnitude 1. Since
each particular flux density is the sum of a constant, a sine, and a cosine, the worst-case magnitude is
easily determined by adding the absolute value of the constant component to the square root of the sum
of the squared coefficients of the sine and cosine terms.

Rule This subroutine evaluates tie,ax produced for a given bias linearization solution for the best case
biasing level. A golden section search is performed to find the Best

IRule An alternate entry int®ule .

ReadEm Reads the specified data file and forms the matridgsMy, andVs necessary to find and rank
variousW matrices.

MakeH Creates théd matrix.

#include<math.h>
#include<stdio.h>
#include<stdlib.h>

#define DT 0.5 [* modified Newton-Raphson step size */
#define HOW_MANY 1000  /* number of solutions to be found */
#define MAXSTEPS 1000 /* maximum iterations allowed for any one soln.  *

#define VERB FALSE [* flag for verbose mode */
#define Del 0.0001 * step length used to determine reduced gradient */
#define GradStepLength 0.01

struct Entry{
int co,ve,ma;

2
#include"mathstuf.c"

double GetMaxB(l,V,Vb,k,dim)
double **| **V **\/b;
double k;
int dim;
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}

int
dou

i;
ble max,*rb,*rx,*ry,*res;

res=(double *)calloc(dim,sizeof(double));

rx=(double *)calloc(dim,sizeof(double));
ry=(double *)calloc(dim,sizeof(double))

rb=(double *)calloc(dim,sizeof(double));

max=0.;
vTimes(V,1[0],rb,dim);
vTimes(V,I[1],rx,dim);
vTimes(V,I[2],ry,dim);
for(i=0;i<dim;i++)
res[ij=k*fabs(rb[i]) + sqrt(rx[iJ*rx[i]+ry[i]*ry[i])/k;
for(i=0;i<dim;i++)
if(res[i]>max) max=res][i];

vTimes(Vh,I[0],rb,dim);
vTimes(Vb,I[1],rx,dim);
vTimes(Vb,I[2],ry,dim);
for(i=0;i<dim;i++)
res[ij=k*fabs(rb[i]) + sqrt(rx[iJ*rx[i]+ry[i]*ry[i])/k;
for(i=0;i<dim;i++)
if(res[i]>max) max=res]il;

free(res); free(rx); free(ry); free(rb);

retu

m max;

double Rule(l,V,Vb,dim,zeta)

/*

¥

dou
int
int
dou
dou

ble **|,**V/ *\/b *zeta;

dim;

s

ble ¢1=0,c2=0,c3=0,c4=0,H,max=0,t,Bm,z0,z1;
ble q[4].k[4];

cl = Ibias . | bias

c2
c3
c4

for(i

{

}

IX . Ix
ly . ly
Ix . ly

=0;i<dim;i++)

cl+=
c2+=
C3+=
cd+=

I[O](iT[OI[1);
L],
21 1211);
IL0TAE2100);

LS LLLLY

[* get an initial estimate for bias level */
for(t=0.0,j=0,H=0.0;t<2*Pi;t+=Pi/300.)

{

101
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}

j+t;
H+=sqrt(sqrt((2*cos(t)*sin(t)*c4 + cos(t)*cos(t)*c2 +
sin(t)*sin(t)*c3)/c1));
}
H/=((double) j);

k[0]=0.5*H;k[1]=0.8*H;k[2]=1.2*H;k[3]=1.5*H;
for(j=0;j<4;j++) q[j]=GetMaxB(l,V,Vb,k[j],dim);

for(j=0;j<40;j++)

{
for(i=1,1=0;i<4;i++)
if(alil<all)) I=i;
if(1<2){
K[3]=k[2]:q[3]=q[2];
else{
} K[0]=k[1];q[0]=q[1];
k[1]=k[0]+0.3*(k[3]-k[0])/2.;
k[2]=k[3]-0.3*(k[3]-k[0])/2.;
q[1]=GetMaxB(l,V,Vb,k[1],dim);
q[2]=GetMaxB(l,V,Vb,k[2],dim);
}
for(i=1,1=0;i<4;i++) if(qfil<q[l]) I=i;
*zeta=k(l];
return qfl];

double IRule(l,V,Vb,ncoils,dim,zeta,out)

}

double *1,**V *Vh *zeta,*out;
int ncoils,dim;

int iJ;

for(i=0;i<ncoils;i++)
for(j=0;j<3;j++)
if(i<dim) out[j][i]=I[j*dim+i];
else out[j][i]=0.;
return Rule(out,V,Vb,ncoils,&zeta);

int ReadEm(fi,x,y,p,v,vb,Ncoils,Dim)

char *fi
double ***X,***y,***p,***v,***Vb;
int *Ncoils,*Dim;

int i,j,k,dim,ncoils,*onflag,errflag=FALSE;
double **Mx,**My,**| ¥*R **T **\/ **\/t **P;
double *an,*e;

double J;

102
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char st[80];

FILE *fp;

if ((fp=fopen(fi,"rt"))!=NULL)

{

ncoils=0;
while(fgets(st,80,fp)!=NULL)

if (strlen(st)>2) ncoils++;
if (VERB==TRUE) printf("%i coils.\n",ncoils);
fclose(fp);
fp=fopen(fi,"rt");
an=(double *)calloc(ncoils,sizeof(double));
onflag=(int *)calloc(ncoils,sizeof(int));
for(i=0;i<ncoils;i++)

{

fscanf(fp,"%lf",&an[i]);

an[iJ*=(Pi/180.);

fscanf(fp,"%i",&onflagli]);

if (VERB==TRUE)

printf("%f %i\n",an(i],onflag[i]);

}
fclose(fp);

[* sort so that active coils come first */
P=MatrixAlloc(ncoils,ncoils);
for(dim=0,i=0;i<ncoils;i++){
if (onflag[il==TRUE) dim++;
Plilil=1.0
}
for(i=0;i<ncoils-1;i++)
for(j=0;j<ncoils-1;j++)

{
if (onflag[j+1]>onflag[j])
{
e=P[]J;P[]=P[+1];P[+1]=e€;
J=an[j];an[j]=an[j+1];an[j+1]=J;
k=onflag[j];onflag[j]=onflag[j+1];
onflag[j+1]=k;
}
}

[* create Mx,My matrices */
R=MatrixAlloc(ncoils,ncoils);
T=MatrixAlloc(ncoils,ncoils);
Mx=MatrixAlloc(ncoils,ncoils);
My=MatrixAlloc(ncoils,ncoils);
V=MatrixAlloc(ncoils,ncoils);
Vt=MatrixAlloc(ncoils,ncoils);

for(i=0;i<(ncoils-1);i++)
{
Rf]=1.;
R[[i+1]=-1.;
=1,
Tlij[i+1]=-1.;
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}
for(i=0;i<ncoils;i++) R[ncoils-1][i]=1.;
Invert(R,ncoils);
Times(R,T,V,ncoils);

for(i=0;i<ncoils;i++)
for(j=0;j<ncoils;j++)

if(i'=j)
{
R[i][j}=0.;
TI6=0.;
}
else
{
R{i][i]=cos(ani])/2.;
T[i][i]=sin(an[i])/2.;
}

} VAIGI= VG

[* form Mx matrix */
Times(R,V,My,ncails);
Times(Vt,My,Mx,ncoils);

[* form My matrix */
Times(T,V,R,ncoails);
Times(Vt,R,My,ncoils);

Invert(P,ncoils);

[* form backiron flux matrix */
for(i=0;i<ncoils;i++)
for(j=0;j<ncoils;j++)
if (i'=ncoils-1) R{i][j]=0.;
else RIi][]=1.
for(i=0;i<(ncoils-1);i++)
{
R[i][i]=0.5;
R[i][i+1]=-0.5;
}
Invert(R,ncoils);
for(i=0;i<ncoils;i++)
for(j=0;j<ncoils;j++)
if((it=))) Vlilli]=0.;
else Vi[il[j]=1.,
Vt[ncoils-1][ncoils-1]=0.;
Times(R,Vt,T,ncoils);
Times(T,P,R,ncails);
Times(R,V,Vt,ncoils);
[* backiron flux density in Vt */

if (VERB==TRUE)

printf("\nMx  matrix:\n");
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for(i=0;i<ncoils;i++)
{
for(j=0;j<ncoils;j++)
printf("%f ", Mx[i](i]);
printf("\n");
}

printf("\nMy matrix:\n");
for(i=0;i<ncoils;i++)
{
for(j=0;j<ncoils;j++)
printf("%f ", My[il[i]);
printf("\n");

}

[* cleanup */
*x=MXx;

*y=My;

*pZP;

=V,

*vh=Vt;
*Ncoils=ncoils;
*Dim=dim;
MatrixFree(R,ncoils);
MatrixFree(T,ncoils);

free(an);
}
else{
fclose(fp);
errflag=TRUE;
}

return errflag;

}

void MakeH(H,s,|,E,S,Mx,My,dim)
double **H *s**| **S **Mx, **My;
int dim;
struct Entry **E;

int i,k

[* make H matrix */
for(i=0;i<12;i++)
{
for(j=0;j<3*dim;j++) s[j]=0.0;
for(j=0;j<3;j++)

if(E[i][j].co==TRUE)
{
if(E[i][j]. ma==0)
vTimes(Mx,I[E[i][j].ve],S[j],dim);
else
vTimes(My,I[E[i][j].ve],S[]],dim);
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}

}
for(j=0;j<3*dim;j++) H[i][j]=sl;

main(argc,argv)

int argc;
char *argvl[];

int i,j,k,count; [* iterators */

int GradStep,Done;

long steps;

int dim,ncoils,errflag=0;

double u,cost,z,zeta,bestcost,lastcost,dt;

double *lo,*In,*Ip,*s,*cn,*cc,*di,*best;

double **Mx,**My,**P **\/ **\/p **H **HHt **| **S **qut, **m;
struct Entry **E;

FILE *fp;

¥ note --
Mx,My correspond to the M_x,M_y matrices of theory
permuted so that active coils are in the upper left
dim x dim block.
P is the matrix by which Mx and My were permuted,
necessary so that output can be un-permuted for
printout. */

srand((int)time(0));

if (argc!=2) errflag=1;
if (errflag==0)
{

if(ReadEm(argv[1],&Mx,&My,&P,&V,&Vb,&ncoils,&dim)==TRUE)

errflag=2;

}

if (errflag==0)

{
if((fp=fopen("matset.dat","rt"))!'=NULL)
{

E=(struct Entry **)calloc(12,sizeof(struct Entry *));

for(i=0;i<12;i++)
{
E[i]=(struct Entry *)calloc(3,
sizeof(struct Entry));
for(j=0;j<3;j++)
{
fscanf(fp,"%i", &E[i][j].co);
fscanf(fp,"%i", &E[i][].ve);

fscanf(fp,"%i", &E[i][j].ma);

}
fclose(fp);

}

else errflag=3;
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}
if (errflag==0)
{

dof

[* Allocate matrices needed */
lo=(double *)calloc(3*dim,sizeof(double));
In=(double *)calloc(3*dim,sizeof(double));
Ip=(double *)calloc(3*dim,sizeof(double));
best=(double *)calloc(3*dim,sizeof(double));
| =(double **)calloc(3,sizeof(double *));

S =(double **)calloc(3,sizeof(double *));
I[0]=In; I[1]=In+dim; I[2]=In+2*dim;

s =(double *)calloc(3*dim,sizeof(double));
S[0]=s; S[1]=s+dim; S[2]=s+2*dim;
H=MatrixAlloc(12,3*dim);
HHt=MatrixAlloc(12,12);
m=MatrixAlloc(3*dim,3*dim);
out=MatrixAlloc(4,ncoils);

cn=(double *)calloc(12,sizeof(double));
cc=(double *)calloc(12,sizeof(double));
di=(double *)calloc(3*dim-12,sizeof(double));
count=0;

[* make an initial random guess */
for(i=0;i<3*dim;i++){
if (count<HOW_MANY) In[ij=Random();
else In[i]=best[i];

}

[* update currents vector */

steps=0;GradStep=FALSE;Done=FALSE;dt=DT;lastcost=pow(10.,10.);

dof
MakeH(H,s,|,E,S,Mx,My,dim);
if(GradStep==TRUE){

[* get a basis for the feasible space */

for(i=0;i<3*dim;i++){
for(j=0;j<3*dim;j++){

if (i<12) m{iljJ=H{0L;

else mli][j]l=Random();

}
}

Gramm(m,3*dim,3*dim);

[* compute a numerical derivative associated
with each direction of feasible space */

for(i=12,j=0;i<3*dim;i++ j++){
for(k=0;k<3*dim;k++)

Ip[K]=In[k]+Del*m{i][k];
difj] =IRule(lp,V,Vb,ncoils,dim,&zeta,out);

for(k=0;k<3*dim;k++)
Ip[k]=In[k]-Del*m{i][k];

di[jl-=IRule(Ip,V,Vb,ncoils,dim,&zeta,out);

difj]=difj}/(2.*Del);

107



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 108

I* scale the derivative vector */

for(j=0,zeta=0.;j<3*dim-12;j++)
zeta+=di[j]*di[];

zeta=sqrt(zeta);

for(j=0;j<3*dim-12;j++)
di[j]J=GradStepLength*di[j]/zeta;

[* add gradient step to In */
for(i=12,k=0;i<3*dim;i++,k++)
for(j=0;j<3*dim;j++)
Infi]-=difkl*m{il(];

[* Make H matrix for the new In *
MakeH(H,s,|,E,S,Mx,My,dim);
GradStep=FALSE;

}

/* make H . H(transpose) matrix */
for(i=0;i<12;i++)

{
for(j=0;j<12;j++)
{
z=0.;
for(k=0;k<3*dim;k++)
z+=H[i][KI*HI]IK];
HH[i[j]=z;
}
}
Invert(HHt,12);

[* make RHS *
for(i=0;i<12;i++)

{
cnfi]=0.;
for(j=0;j<3*dim;j++)
cnfil+=H]{I*In(];
if(i>9) cnfi]-= 1,
}
vTimes(HHt,cn,cc,12);

[* figure new current */
for(i=0;i<3*dim;i++)

{

lo[i]=In(i];

for(j=0;j<12;j++)

In[i]-=0.5*dt*H[j][i*cc[j];

}
[* figure how convergence is doing */
z=0;
for(i=0;i<12;i++)
{

cn[i]=0.;
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for(j=0;j<3*dim;j++)
cnfil+=H[{Inl;
if(i>9) cnli]-=1.0;
z+=cn[il*en[i];
}
z=sqrt(z);
if (z<pow(10.,-8.)}
if (count!=(HOW_MANY)) Done=TRUE;
else{
cost=IRule(In,V,Vb,ncoils,dim,&zeta,out);
if(VERB==TRUE)
printf("f_max = %f\n",pow(cost,-2.));
GradStep=TRUE;
dt=1.;
if (cost>lastcost) Done=TRUE;
lastcost=cost;
steps=0;
}
}
if (VERB==TRUE) printf("convergence %e\n"z);
steps++;
} while((Done==FALSE) && (steps<MAXSTEPS));

if (steps<MAXSTEPS)

{
for(i=0;i<ncoils;i++)
for(j=0;j<3;j++)
if(i<dim) out[j]{i]=1[j][il;
else out[j][i]=0.;
cost=Rule(out,V,Vb,ncoils,&zeta);
if ((cost<bestcost) || (count==0))
{
for(i=0;i<3*dim;i++)
best[i]=In[i];
bestcost=cost;
printf("%i f max = %f\n",count,
pow(bestcost,-2.));
}
1
else count--;

Jwhile(HOW_MANY>count++);

cost=Rule(out,V,Vb,ncoils,&zeta);

printf("\nf_max = %f\n",pow(cost,-2.));

for(i=0;i<3;i++){
vTimes(P,out[i],out[3],ncoils);
Cp(out[i],out[3],ncoils);

printf("{’);

for(i=0;i<ncoils;i++){

[* output is scaled so that the best \hat{i} o is 1
and saturation occurs at f=f_max *

printf("{%f, %f, %f}",
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out[O][i]*zeta/cost,cost*out[1][i]/zeta,
cost*out[2][i]/zeta);
if (i<(ncoils-1)) printf(",\n");
}
printf("An");
}

[* catch any errors */

if (errflag==1){
printf("%s - finds control currents for a magnetic\n",argv[0]);
printf(* bearing specified in a given datafile:\n\n");
printf("%s [datafile]\n",argv[0]);

if (errflag==2) printf("File Not Found.\n");
if (errflag==3) printf("Data file \"matset.dat\" not found.\n");
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A.2.2 Mathematics library mathstuf.c

This library contains various subroutines that facilitate the creation of and operation on matrices in C.

#define Pi 3.141592653589793
#define TRUE 1
#define FALSE 0

void MatrixFree();
void Times();

void vTimes();
double Dot();

void TransposeTimes();
char Solve();

char Invert();

double **MatrixAlloc();
double Random();
void MatrixClear();
void PlusMat();

void CpMat();

void Cp();

void Plus();

void Scale();

double Random()

{
[* returns a random number between -1 and 1 *
double x;
x=(double)rand();
return (2.*x/((double) RAND_MAX) - 1.);
}
void MatrixFree(M,n)
double **M;
int n;
{
¥ frees up a matrix allocated with MatrixAlloc */
int i
for(i=0;i<n;i++) free(M[i]);
free(M);
}
void MatrixClear(M,n)
double **M;
int n;
{

[* fills up a square matrix with zeros in every entry *
int iJ;

for(i=0;i<n;i++)
for(j=0;j<n;j++)
MIi][j}=0.;
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void Times(a,b,c,n)
double **a,**b,**c;

int n;
{
[* multiplies together 2 square matrices a and b, puts result in ¢ */
int i,j,k;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
ciil=0.;
for(k=0sk<n;k++) c[il[jl+=ali][KI*blk](];
}
}

void PlusMat(out,in,scalar,n)
double **out,**in;
double scalar;

int n;
{

[* adds matrix “in” times the scalar “scalar” to the matrix

“out”. The result is returned in “out” *
int iJ;
for(i=0;i<n;i++)
for (j=0;j<n;j++)
out[i][j]=out[i][j]+scalar*in[i][;

}

void CpMat(out,in,n)
double **out,**in;
int n;

[* copies square matrix in “in” into “out” */
int iJ;

for(i=0;i<n;i++)
for (j=0;j<n;j++)
out[i]fi]=in{il[l;

}
double Dot(b,c,dim)

double *b,*c;

int dim;

I* returns the dot product of vectors b and ¢ *

int i;

double res=0.;
for(i=0;i<dim;i++) res+=D[i]*c[il;
return res;

}

void Cp(b,c,dim)
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}

double *b,*c;
int dim;

* copies entries from b into ¢ */
int i

for(i=0;i<dim;i++) b[i]=c[i];

void Plus(z,b,c,dim)

}

double *b*c, *z;
int dim;

¥ adds vectors b and c, puts the result in z */
int i

for(i=0;i<dim;i++) z[i]=b[i]+c[i;

void Scale(z,s,dim)

double *z;s;
int dim;

[* scales every entry in z by the constant s */
int i;

for(i=0;i<dim;i++) z[i]=s*z[i];

void vTimes(M,x,b,dim)

}

double **M,*x,*b;
int dim;

/¥ multiplies vector x times square matrix M. Result in b *
int iJ;
for(i=0;i<dim;i++)

b[i]=0;
for(j=0sj<dim;j++) b[il+=(MI0] * x[]);

void TransposeTimes(a,b,c,n)

double **a,**h,**c;
int n;

/¥ multiplies Transpose[a] and b, puts the result in ¢ */
int i,j,k;
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for(i=0;i<n;i++)
for(j=0;j<n;j++)

cfi]fi1=0.;
for(k=0sk<n;k++) c[il[jl+=a[k]lil*b[k][;
}
}
double **MatrixAlloc(rows,cols)
int rows,cals;
{
I* allocates a matrix with dimensions specified by rows and cols */
double **matrix;
int i
matrix=(double **)calloc(rows,sizeof(matrix));
if (matrix==NULL) return NULL;
for(i=0;i<rows;i++){
matrix[i]=(double *)calloc(cols,sizeof(double));
if (matrix[i]==NULL) return NULL;
}
return matrix;
}

char Solve(m,b,dim)
double **m,*b;
int dim;

¥ solves the linear system m x = b for x. The result is returned
in b, m is destroyed in the process *

int ij,k;
double *z;
double maxf;
int n;

for(i=0;i<dim;i++)
{
for(j=i,max=0;j<dim;j++)
if (fabs(m[j][i])>fabs(max))
{
max=mijl;
n=j;
}
if(max==0) return FALSE;
z=m[i];m[i]=m[n];m[n]=z;
f=b{i];bfi]=b[n];b[n]=F;
for(j=i+1;j<dim;j++)
{
f=mj][i}/mi](i];
b[jJ=b[j]-f*b(il;
for (k=ik<dim;k++)
m{j]k]-=(Fmi][k]);
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}

for(i=dim-1;i>=0;i--)

for(j=dim-1,f=0;}>i;j--)
Fr=mi][i[*bil;
bil=(b{il-f)/m]fl;

return TRUE;

char Invert(double **m, int dim)

{

}

I* replaces square matrix m with its inverse */
int i,j,k;

double **x;

double *z;

double maxf;

int n;

x=MatrixAlloc(dim,2*dim);
for(i=0;i<dim;i++)

{
for(=0sj<dim;j++) x[iJ]=m{il[];
X[i][dim+i]=1.0;
}
for(i=0;i<dim;i++)
{
for(j=i,n=1,max=0;j<dim;j++)
if (fabs(x[j][i])>fabs(max))
{
max=x[i][i;
n=j;
}
if(max==0) return TRUE;
z=X[I];x[il=x[n];x[n}=z;
for(=ij<2*dim;j++) x{iJJ=x[il{}/max;
for(j=0;j<dim;j++)
if (j'=i)
{
F=xqlIi;
for (k=i;k<2*dim;k++)
X[KI=x K- K];
}
}
}

for(i=0;i<dim;i++) for(j=0;j<dim;j++) mli][j]=x[i[dim+;
MatrixFree(x,dim);
return FALSE;

int Gramm(m,row,col)

double **m;
int row, col;

115



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 116

[* does a Gramm-Schmidt orthonormalization of the rows of m *

int i,j,k;
int flag=FALSE;
double x;

for(k=0;k<row;k++){
for(j=0,x=0.;j<col;j++) x+=(m[K][*m[K][]);
X=sqrt(x);
for(j=0;j<col;j++) m[K][jl=m[K][]/x;

for(i=0;i<k;i++){
for(j=0,x=0.;j<col;j++) x+=m[K][j*m(i][i];
for(j=0;j<col;j++) mik]{l-=(mfil]);

}

for(j=0,x=0.;j<colj++) x+=(m[K]{]*m[k][]);
x=sqrt(x);

if(x<pow(10.,-12)){
flag=TRUE;
for(j=0;j<col;j++) m[K][j]=0.;

}
else for(j=0;j<col;j++) m[K][l=mK][j/x;
}

return flag;
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A.2.3 Sample bearing data filebrg.dat

This file specifies the location of each pole and which poles are active. The first column corresponds to the
angle of the center of each pole as measured in degrees from the “X” axis as defined inA&Quie

second column denotes which coils have active poles. A “1” denotes that the coil on the corresponding pole
is active, and a “0” that the coil is inactive. This particular data file corresponds to Case 11.

225

67.5

112.5
157.5
202.5
247.5
292.5
3375

PP ORRFPORO
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A.2.4 Data file matset.daheeded byfindw.c

This file contains information thdindw needs to build th&l matrix defined in eq.§.19. This file should
not be modified.

1000 0O0O0O0OTO
101 000O0O0TO0
0001 100O0TO0
000111000
000O0O0OO0OTI1I20
000O0O0OO01 21
000120110
000121111
120000100
111101000
121000101
110100000
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A.2.5 Sample run offindw.c

As a demonstration, the program was run using the previously presentierd.tilé  as its input. Each time
the program finds a new best solution, it reports the iteration number, arigidhproduced by that solution.
In this case, 1000 feasible solutions were found starting from random seeds. In tHeitedation, the best
feasible solution is improved through the application of the reduced gradient method. When further gradient
steps yield no improvement, the best solution is reported in a form that can be conveniently imported into
Mathematica

This particular execution was run through titree command so that the time taken to run the
program was reported at the end of the run. This run took ab@mimutes of time on an IBM RS6000. A
listing of the run follows.

romac2: /home/dcm3c/diss $ time findw brg.dat

0 f max = 0.078109
1 f_max = 0.090939
6 f max = 0.164693
24 f_max = 0.183287
33 f max = 0.213848
36 f max = 0.228720
49 f_max = 0.232852
230 f max = 0.238559
274 f max = 0.263614
812 f max = 0.276421
1000 f_max = 0.290706

f_max = 0.290706

{{0.000000, 0.000000, 0.000000},
{-0.642233, -0.019391, -1.541162},
{0.000000, 0.000000, 0.000000},
{-0.530964, 2.098009, -1.183733},
{0.078041, -0.261275, -1.308100},
{0.000000, 0.000000, 0.000000},
{-0.653558, 0.598380, 0.436182},
{-0.055513, 2.256527, -0.862093}}

real 5m11.89s
user 4m36.06s
Sys 0m0.07s
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A.3 Mathematicaprogram for solution of direct optimization problem

This program finds the solution to the direct optimization problem for the specific case of a non-dimensionalized
8-pole radial bearing with all coils active. Variabla$andm?2 contain matrice#ly andMy respectively. The
specificip to be used in the solution is specified by the variable

After the M matrices andl, are defined, the program integrates the system of differential equations
(7.6) at 40 different angles spaced evenly between 0 and\@ Euler integration is performed frofn= 0 to
f = 1 with a step size of 0.02. B
B The currents required for coil “1” are stored as an array of points containdatan After all
integrations are done, the informationdata is used to form a graphical representation of the solution
surface. The graphics primitives that define the surface are contained in the viriablee last statement
of the program plots the resulting surface with the appropriate labeling.

Rr={{1,-1,0,0,0,0,0,0},

{0,1,-1,0,0,0,0,0},

{0,0,1,-1,0,0,0,0},

{0,0,0,1,-1,0,0,0},

{0,0,0,0,1,-1,0,0},

{0,0,0,0,0,1,-1,0},

{0,0,0,0,0,0,1,-1},

{1,1,1,1,1,1,1,1};
Nn={{1,-1,0,0,0,0,0,0},

{0,1,-1,0,0,0,0,0},

{0,0,1,-1,0,0,0,0},

{0,0,0,1,-1,0,0,0},

{0,0,0,0,1,-1,0,0},

{0,0,0,0,0,1,-1,0},

{0,0,0,0,0,0,1,-1},

{0,0,0,0,0,0,0,03};
V=Inverse[Rr] . Nn;
m1=Chop[N[Transpose[V].DiagonalMatrix|

(1/2)*Table[Cos[Pi(n/4 + 1/8)],{n,0,7}]].V]];
m2=Chop[N[Transpose[V].DiagonalMatrix[
(1/2)*Table[Sin[Pi(n/4 + 1/8)],{n,0,7}].V]};

i0=0.25%1.,-1.,1.,-1.,1.,-1.,1.,-1.};
d=8;

data=Table[,{41}];
co=0;
For[t=0,N[t]<=N[2 Pi],t+=Pi/20,
ds=1/50;
g=Table[,{1/ds+1}];k=0;
x=io; z1=0.; z2=0,;
For[j=0,j<=1,j+=ds,
A=ldentityMatrix[d]+2(z1 m1 + z2 m2);
Ap=2*{ml . x,m2 . x};
A=Transpose[Join[A,Ap]];
Ap[[1]I=Join[Ap[[1]],{0,0};
Ap[[2]]=Join[Ap[[2]],{0,0};
A=Join[A,Ap];
b=Join[Table[0,{d}],{N[Cos][t]],N[Sin[t]]}];
ans=Inverse[A].b;
k++;
(* qllkllI=Join{{N[il}x,{z1,22}]; *)
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QKNI={N[ CostlI,N Sin[t]].x[[1]T}
x+=(N[ds]*ans[[Range[1,d]]]);
z1+=(N[ds]*ans[[d+1]]);
z2+=(N[ds]*ans[[d+2]])

I

CO++;

datal[co]]=q;

Print[N[t]]

]

li=Table[,{40*50}]:k=0;
For[i=1,i<41,i++,
Forfj=1,j<51,j++,
k++;
lifk]]I=Polygon({datal[i,j]],data[[i+1,]],
data[[i+1,j+1]],data[fi,j+1]1}]
I
Print[i];
]

Show[Graphics3D[{EdgeForm[{Thickness[0.001]}],1i}],
FaceGrids->{{0,0,-1},{1,0,0},{0,1,0}},
AxesLabel->{f1,f2,i1},BoxRatios->{1,1,1},Axes->True,
ViewPoint->{-1,-6,0.2},Lighting->True,AxesEdge->{{-1,-1},
Automatic,Automatic}]
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A.4 C code for saturating 8-pole bearing

This C code is for the specific case of an 8-pole nondimensionalized radial magnetic bearing subject to satu-
ration. All parameters are hard-coded into the source so no external data file is necessary. These parameters
are:

ThetaDivs Defines the number of angles at which the system of equations specifi@ByWill be inte-
grated.

MaxForce Denotes the limit of integration to which the force will be integrated.

ForceDivs Specifies the size of each step in the integration by specifying the number of steps between 0 and
MaxForce .

BiasLevel scales the vectop = {1,1,1,1,1,1,1,1}T so that solutions can be found for various bias levels.

The output of this program is a setMfathematicegraphics primitives that can be plotted to produce
a portrait of the required currents analogous to the plot created by the prétahsematicgprogram.

The algorithm employed by this program is explained in detail 248 Specific subroutines used
in the program are

MakeA Forms the matrix on the left-hand side 8f25).

EvalF Evaluates the Kuhn-Tucker conditions. This evaluation is used to take Newton-Raphson steps to make
sure that the Kuhn-Tucker conditions are satisfied.

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

#define ThetaDivs 40
#define MaxForce 1.00
#define ForceDivs 50
#define BiasLevel 0.25

#include"mathstuf.c"

void MakeA(A,s,t,M1,M2,Ca,x,a)
double **As,t*M1,*M2,**Ca,*x;
int a;

int i,j,k,p,0;
double c;

MatrixClear(A,16);

for(p=0;p<8;p++}

for(q=0;q<8;q++){
if (p==q) c=1.; else c=0,
Alpllgl=2*(c + x[8]*M1[p](q]

+ x[9*M2(p][al);

Al8][pl+=2*M1[p][q]*x[q];

} Al9][p]+=2*M2[p][a]*[al;

Alp](8]=A[8][p]: AlpI[OI=A[Ip];
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for(i=0,k=10;i<a;i++k++)
for(j=0;j<8;j++){
AKII=Calil];
AllIKI=Calil(i];

}

void EvalF(b,s,t,x,M1,M2,Ca,na,i0)
double *b,s,t,*x,**M1,**M2,**Ca,*0;
int na;
[* puts evaluated K-T conditions into b */
{
int i,j,k;
double f1,f2;

for(k=0;k<16;k++) b[k]=0.;
for(i=0;i<8;i++) b[i]=2.*(x[i] - BiasLevel*io[i]);

for(f1=0.,f2=0.,i=0;i<8;i++){
for(j=0;j<8;j++){
FL+=x[PMLLGTX;
f2+=x[I*M2[i]li*[];
bli+=2.*(x[8*MLiII*x[] + x[OTM2[il[I*x[]);

}

for(i=0;i<8;i++)
for(j=0;j<na;j++)
blil+=(CafliIx[10+]);

for(i=0;i<na;i++){
for(j=0,b[10+i]=0.;j<8;j++) b[10+]+=Cali][j]I*x[;
b[10+i]-=1,,

}

b[8]=f1-s*cos(t); b[9]=f2-s*sin(t);

main()

int i,j,k,p,q.flag;

int na,np,nc;

double **A’**V’**Ca’**Cp’**G’**H’**Mll**M2’**R’**N’**Q’**d;
double io[8]={1.,-1.,1.,-1.,1.,-1.,1.,-1.};

double t,s,dt,ds,c,maxb,x[16],b[16];

A =MatrixAlloc(16,16);
V =MatrixAlloc(8,8);
R =MatrixAlloc(8,8);
N =MatrixAlloc(8,8);
M1=MatrixAlloc(8,8);
M2=MatrixAlloc(8,8);
Q =MatrixAlloc(8,8);
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G =MatrixAlloc(2,8);
H =MatrixAlloc(6,8);

Cp=MatrixAlloc(16,8);
Ca=(double **)calloc(16,sizeof(double *));
np=16; na=0; nc=16;

for(i=0;i<7;i++){
RII[]=1.; R[i][i+1]=-1.;
N[lli]=1.; N[i][i+1]=-1.;
}
for(i=0;i<8;i++){
RI7I=1;
M1[i][i]=0.5*cos(Pi*(((double) i)/4. + 0.125));
M2][i][i]=0.5*sin(Pi*(((double) i)/4. + 0.125));
}

Invert(R,8);

Times(R,N,V,8);
Times(M1,V,Q,8);
TransposeTimes(Q,V,M1,8);
Times(M2,V,Q,8);
TransposeTimes(Q,V,M2,8);

for(i=0;i<8;i++)
for(j=0;j<8;j++){
Cplilnl =Vl
} Cp[B+[]=-V{Ll;

dt=2.*Pi/((double) ThetaDivs);
ds=MaxForce/((double) ForceDivs);
d=MatrixAlloc(ThetaDivs+1,ForceDivs+1);
for(i=0,t=0.;i<=ThetaDivs;i++,t+=dt){

for(j=0;j<16;j++){
if(j<8){

}

else x[j]=0.;

X[j]=BiasLevel*io[j];

}

for(j=0;j<na;j++){
Cplnp]=Ca[];
np++;

}

na=0;

for(j=0,s=0.;j<ForceDivs;j++,s+=ds){

d{iji1=x(0r;

¥ make b for prediction step */
for(k=0;k<16;k++) b[k]=0.;
b[8]=cos(t); b[9]=sin(t);
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[* compute prediction step */
MakeA(A,s,t,M1,M2,Ca,x,na);
Solve(A,b,10+na);
for(k=0;k<16;k++) x[k]+=ds*b[K];

[* do newton cleanup step */
MakeA(A,s,t,M1,M2,Ca,x,na);
EvalF(b,s,t,x,M1,M2,Ca,na,i0);
Solve(A,b,10+na);
for(p=0;p<10+na;p++)
X[p]=x[p]-b[p];

* check for constraint violation */
flag=FALSE;
for(p=0;p<np;p++){

for(k=0,c=0.;k<8;k++) c+=Cp[p][KI*x[K];

if (c>=1.1
flag=TRUE;

I* printf("*"); *
Ca[na]=Cp[p];
X[10+na]=0.;
nat+; np--;

for(k=p;k<np;k++) Cp[k]=Cplk+1];
}

[* if new constraints have been imposed,
clean up with a newton step to meet constraint
exactly. */

if(flag==TRUE){
MakeA(A,s,t,M1,M2,Ca,x,na);
EvalF(b,s,t,x,M1,M2,Ca,na,io);
Solve(A,b,10+na);
for(p=0;p<10+na;p++)
X[pI=x[p]-b[p];

}
\ dfilf1=x[o};

printf("li={");
for(i=0,t=0;i<ThetaDivs;i++,t+=dt){
for(j=0,5=0;j<ForceDivs;j++,s+=ds){
printf(
"Polygon[{{%f,%f,%f}{%f,%f,%f} {%f, %f, %f},{%f, %f,%{}}]",
s*cos(t),s*sin(t),d[i][i],
s*cos(t+dt),s*sin(t+dt),d[i+1][j],
(s+ds)*cos(t+dt),(s+ds)*sin(t+dt),d[i+1][j+1],
(stds)*cos(t),(s+ds)*sin(t),d[i][j+1]);
if((i==ThetaDivs-1) && (j==ForceDivs-1)) printf("}\n");
else printf(",\n");
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Appendix B

Slew rate limiting.

B.1 Bounds on current slew rate.

In this dissertation, it is assumed that any requested set of currents is realized virtually instantaneously.
However, some type of amplifier, in conjunction with a very fast feedback loop, is actually used to obtain
the requested currents in a short but not infinitesimal time. Practical limitations of magnetic bearings are
addressed in detail iTMHSH89. The goal of this appendix is to provide a brief synopsis of the limitations

due to amplifiers so that control currents can be chosen in a way so that nominal bearing performance is not
affected.

The amplifier realizes the requested currents by controlling the voltage drop across each coil. The
current flowing in each coil is sensed and used by the amplifier control scheme to choose voltages that drive
the coil currents to the desired values.

Two types of amplifier are generally used in magnetic bearing applications: linear and switching
amplifiers. Linear amplifiers can create a voltage anywhere between two extreme voltagad,—Vo.
Switching amplifiers, however, alternate only between the two extreme voltages and spend almost no time at
intermediate voltages. Switching amplifiers are used predominantly due to their low cost and high efficiency
as compared to linear amplifiers.

Regardless of amplifier type, the finite maximum amplifier voltage limits the currents in the coils to
a finite time rate of change. The rate of current change in a coil is known as “slew rate.” For any bearing, the
electrical circuit equations are:

di
a _ B.1
Ly TRi=v (B.1)

whereL is the inductance matrix for the bearing as define®if)( Ris a diagonal matrix of coil resistances,
andv is a vector of amplifier voltages. Typically, the resistance of the coils is small in comparison to the
impedance due to the coils’ inductance; it is then appropriate to approximate:
di
L—=v B.2
Ot (B.2)
It is useful to derive one number as a limiting slew rate. In the case of a single horseshoe bearing,
the limiting slew rate is trivial to compute. In this casg,, andv are all scalars; by inspection d3(), the
largest possible slew rate magnitude is
di Vo
= =22 B.3
dtmax L (B.3)
For a system with cross-coupling terms in the inductance matrix (such as occurs with an 8-pole radial bearing
with all coils driven independently), a similar value can be derived.
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Taking the 2-norm of each side d@ (1) yields

di
L— =
g, = e
— - |ldi
L] ||— >
a5, = e
difl vl
dtj, — o[L]
It can be noted thatv||e < ||V||2:
dif| _ vl
dt||, — olL]
For the limiting case|V||w = Vo.
di Vo
R >
dti|, ~ alL]
A sufficient condition for a requested slew rate to be realizable is then
di Vo
— <= B.4
dt|, ~ o[L] (B4

Slew rate limitings the condition where the requested slew rate is greater than can be realized. One
scenario in which this problem can occur is at low force levels. Consider

fi=i'Mji; j=1,...k

The derivative of force with respect to time is
— =2'Mj—; (B.5)

If zero force is realized by= 0, d f/dt = O regardless ofli/dt. An infinite current slew rate is required to
get a finited f /dt, and slew rate limiting is inevitable. Slew rate limiting can be avoided at low force levels by
requiring non-zero currents at zero force such {Bab) is a set ok independent linear equationsdin/dt.

Another potential cause of slew rate limiting is a discontinuous inverse mapping. Any discontinuities
in i(t) require an infinitedi/dt. This problem is avoided by requiring an inverse mapping that is continuous
and has finite gradients everywhere.

Another, and more serious, cause of slew rate limiting can arise due to mis-specification of the
amplifier switching voltage. If the switching voltage is not high enough, requekfeid can be outside of
the range of realizable values during normal operation. Perhaps the only remedy for this type of slew rate
limiting is a change to amplifiers with higher switching voltages.

B.2 Decoupling of electrical circuits in a radial magnetic bearing

In a typical magnetic bearing wound in a horseshoe configuration, the requested currents are realized by
a switching amplifier controlled by a fast feedback loop. With horseshoe windings, each pair of coils is
magnetically isolated from all other coils; current in horseshoe’s winding produces flux only in the legs
associated with that horseshoe. This configuration is illustrated in Fylire

However, the same is not the case for a bearing with an independently wound coil on each leg. A
current applied to one leg causes flux in all legs of the bearing. Moreover, the inductanceL.nesiixgular
due to conservation of flux constraints; the current vetter{1,...,1} produces no flux and is therefore
associated with a zero inductance. This current vector associated with no flux can create problems if the usual
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Figure B.Z Flux induced by a horseshoe winding

switching algorithm for realizing currents in horseshoes is naively applied to a bearing with independently
wound coils.
For a bearing wound in a horseshoe scheme, the electric circuit equation for an individual horseshoe
is
di
l—+ri=v B.6
T (B.6)

The applied voltagey, is supplied by a switching amplifier and can take on the value of erh@r—v,. The
control law that realizes a desired current can be idealized as

V=V, ; I<iq (B.7)
V=—Vy ; 1>ig ’

whereiq is the desired current. This system is known to give good tracking performance as I|du19<a¥f
and| ‘fj—'g'| < % (restrictions on the achievable magnitude and slew raie of
Consider the use of the same switching algorithm on a 4-pole bearing with independently wound

coils. The electric circuit equations are:

di .
L—+ri=v B.8
Tl (B.8)
where 3 1 1 1
2 Yo 11
N4a\ | -7z 3 —3 —%
(BT84 ®9)
% i i i i
1 1 1 3
i i 7 4

Inductance matrix is singular; its eigenvalues a(é'%){l, 1,1,0}. Sincel is singular, there are only 3
states to the system, even though there are four currents and four inputs. Writing this system in standard form
via a singular value decomposition yields:

A Gor (G |7 v
dt N2a o N2a o X
2

N
N

0 -—Llv (B.10)
1 1
2
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L 1
[ \/0E (1) 21-| 1 1171
. N 1 1111
I = 1 | X+ <—) v (B.11)
-5 0 3 4y 11 1 1
111
o -1 _1

V2 2

Any component o along{1,1,1,1} is fed instantaneously into creating a large magnitude step in coll
currents. Since half of the possible switching states have a component{dldnd, 1}, exciting the zero-
inductance vector is unavoidable with switching amplifiers.

In the failed coil casel. is no longer singular and no part effeeds directly intd, but a similar
problem remains. For the four-pole bearing, for example, the eigenvalleis dfie one-coil failed case are
{1,1, %1}. One eigenvalue is much smaller than the others, implying that one vector of currents changes nearly
instantaneously. Though all desired currents may be realizable, excessive chatter will result by exciting the
low-inductance current vector.

One solution to these problems is to add extra inductance to the electrical circuit equations associated
only with the component off along the null space df. The result is that the electrical circuit equations
associated with each coil again become decoupled; the same current control scheme used for horseshoes can
then be used for the independent coil actuator. To achieve this decoupling, each bearing coil is also attached
in series to windings around a laminated slotted ring. Each electric circuit has the same number of turns
wound in the same direction around the ring; therefore, flux is only induced in the ritg a component
along{1,1,...,1}. Schematically, the arrangement is illustrated in Fig8u If the ring is designed so that
the self-inductance of the ring for each electric circlgthas a value of

1 (apN?
|pﬁ< % ) (B.12)

the negative off-diagonal mutual inductances iffom the bearing are exactly canceled out by the positive
mutual inductances from the ring. The electric circuit equations become:

aoN2\ di
( % )dt+r|_v (B.13)

Although the inductance matrix has been changed with respect to the electric circuit, the bearing still has all
of the coupled magnetic properties that allow low power loss performance and fault-tolerance.

Since the ring only adds inductance along the null vectok 0&dding this extra ring does not
adversely influence the slew rate limiting properties of the bearing. In addition,lwviticluded in the
electrical circuit, the slew rate limiting characteristics of the bearing become much easier to assess. In this
case, the change in the desired current must obey

5 < oo,
PN

(B.14)

Note that since each coil is decoupled, this condition is not only sufficient for the avoidance of slew rate
limiting but, unlike B.4), also necessary.

B.2.1 Design of the decoupling ring

To mask the effects of eddy currents, the ring should should have an air gap in the magnetic circuit. In a
laminated ring without an air gap, eddy currents can cause a large deviation from the desired inductance at
relatively low frequenciesSto74. If an air gap is included in the ring, nearly all of the reluctance of the
magnetic circuit is due to the air gap; changes in the effective reluctance of the iron sections due to eddy
currents can be neglected.



APPENDIX B. SLEW RATE LIMITING. 131

Figure B.Z Circuits includinglp to cancel mutual inductance.

The dimensions to be chosen for the ring are thgrthe air gap in the ringay, the cross-sectional
area of the ring; andNp, the number of turns from each electric circuit wound around the ring. The first
constraint on the choice of these parameters is B1d2f must be satisfied:

1 (a“ON2> _ (kN (B.15)
n Jo Op

If the bearing is only meant to be used in the all-coils-active case, very little flux is expected to be induced
in the ring. In this case, the desired currents are generally orthogonal to the null sphatecduse currents
along this vector produce no force. The only flux produced in the ring is due to switching noise, of low
magnitude, and transient in nature. The design parameters can then be chosen solely to minimize the size of
the ring while satisfyingB.15). If the bearing is meant to be used in failure configurations as well, additional
constraints on the choice of ring dimensions arise. In many failure cases, it is often not possible to have a
desired set of currents that produce no flux in the ring. The ring must be sized so that the failure configuration
currents do not saturate the ring and cause a premature loss of load capacity.

The flux density in the ring is easily show to be:

(ng—p“o){l,...,l}i (B.16)
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This expression can be non-dimensionalized usikd)¢(A.4):

Bring = (%) (g—‘;> (1.1} (B.17)

For the worst-case orientation for each failure configuration, the ring should not saturate. The worst case is
characterized by

f cosB
—max
Then, the worst-case flux density is

([ Np Jo .
o= () (52 o G19

At this worst caseli,q should be 1, denoting that the ring is bordering upon saturation. Substibying 1
into (B.19) gives a second design constraint:

)~

If gp is to be the arbitrarily chosen paramet®:1(5) and B.20) can be solved foN, andayp in terms ofgp:

1
imax = mv_\(/ax meax{l,...,l}w{ jmaxsine } (B.18)

N

=i (o) 21
i2

ap = Sdmax <@> (B.22)
n gp

For the 8-pole symmetric bearing using the failure currents described in App&nidix, = 7.7. It is inter-
esting to note that this current level occurs on the one-coil-failed case. If this case is neglected, the worst case
iS imax = 4.4. For the one-pole failure case, it may be better to use the numerically determined current set:

r 0.000000 (0000000 00000001
—0.392383 —0.643138 —0.801866
0.284591 -0.317674 (0766932
—0.392383 1021772 —0.112238
0.000000  0OOOOOO 0000000
0.392383 —0.643138 —0.801866
—0.284591 —-0.317674 0766932

L 0.392383 1021772 —0.112238

1=
I

The load capacity is reduced fo _ = 0.554178 for a half back iron bearing, but this particular solution has
no component along thid, ... ,_1'? vector and therefore produces no flux in the ring.

An alternative approach to the ring design is to pick a ring geometry before linearizing currents are
determined. EquatiorB(19) would then be incorporated into the equatins Vsi used to determine the peak
flux density in the bearing for purposes of rating bearing load capacity. Flux density in the ring is treated just
like flux density in an section of the stator. Currents are chosen such that flux density in the ring is taken into
account when selecting a best linearizing current set.

Once an appropriaigy, ap andNp are selected, the ring still must be designed mechanically. One
possible approach is pictured in FiguBe3. The ring is split into two “L’-shaped parts. Coils would be
wound on spools and slid onto L's during assembly. The L's would then be separated by hon-magnetic shims
of thicknesgyp/2.
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3 Schematic of decoupling ring.



