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Abstract

The formulation of current-to-force relationships for magnetic actuators proceeds in a fairly straight-
forward fashion from Maxwell’s equations for magnetostatic problems. However, the inverse problem of
determining a set of currents to realize a desired force is less well understood. Historically, this problem has
been relatively neglected because actuators were built in symmetric geometries where a viable solution could
be intuited. Recently, calls for both optimal actuator performance and fault tolerance have necessitated the
formulation of general solution methodologies for magnetic actuators. This dissertation explores such formu-
lations for magnetic actuators whose current-to-force relationships are homogeneous quadratics. Two inverse
strategies are considered: ageneralized bias linearizationapproach that yields solutions which are easily
implemented and fault-tolerant; and adirect optimalapproach that realizes low power loss. The examples of
the class of actuators addressed are radial magnetic bearings and the magnetic stereotaxis system.



Acknowledgments

credit n

4 favorable notice or attention resulting from an action or achievement
<took all the credit for the idea>

syn acknowledgment, recognition
rel attention, notice; distinction, fame, honor; glory, kudos

How many ways can I say it?

To Eric Maslen for being an advisor and a friend rather than a boss.

To the rest of my committee: Miles Townsend, Hossein Haj-Hariri, Carl Knospe and Gang Tao. Thanks for
your help and encouragement along the way, and for putting in a good word for me now and again.

To Chris Sortore for always answering the phone.

To Daniel Noh for his help and insight on a number of different projects.

To Tana Herndon, Cathy Dixon, and Tammy Ramsey for making sure that I have all the right forms filled out.

To Sri Gopalakrishna and Amish Thaker for swapping unix secrets with me.

To A. Peter Allan for cool ideas and strong martinis.

And of course, my love and thanks to my wife, Aimee Dalrymple, for putting up with me (and Arrington)
through all of this.

iv



Contents

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review 7
2.1 Mathematical literature on quadratic forms. . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Examples of bias linearization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Power optimal solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 The Magnetic Stereotaxis System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Current realization issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Current-to-force relation: Maxwell force actuator 9
3.1 Example 1 – Asymmetric Magnetic Bearing. . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Example 2 – 3 d.o.f. actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Variation of force with position. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Current to force relations: Lorentz force actuator 18
4.1 Governing Dipole Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Formulation of Current-to-Force Relationships. . . . . . . . . . . . . . . . . . . . . . . . 18

5 Realizability of arbitrary forces 21
5.1 DiagonalM matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Necessary conditions for realizability of arbitrary forces in the literature. . . . . . . . . . . 24

5.2.1 Test of indefiniteness for two force directions. . . . . . . . . . . . . . . . . . . . . 25
5.3 Conditions for a solution realizable with finite current slew rate. . . . . . . . . . . . . . . . 26
5.4 General realizability condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 Numerical discovery ofio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Inverse Solution – Bias Linearization 30
6.1 Formulation of the generalized bias linearization problem. . . . . . . . . . . . . . . . . . . 30

6.1.1 Note on choice of reference frame. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 A necessary condition for bias linearization. . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2.1 2 d.o.f. testing of the necessary condition. . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Numerical determination ofW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Analytical determination ofW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Inverse Solution – Direct Optimization 39
7.1 Formulation of the generalized direct optimization problem. . . . . . . . . . . . . . . . . . 39
7.2 1 degree of freedom example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2.1 Similarity between solutions for different magnitudes ofio . . . . . . . . . . . . . . 42

v



CONTENTS vi

8 Bias Linearization–Magnetic Bearings 44
8.1 Analytical solution for symmetric bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.1.1 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2 Numerical determination of linearizing currents in fault configurations. . . . . . . . . . . . 49
8.3 Asymmetric bearings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.4 Criterion for OptimalW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.5 Optimization ofW on the basis of maximized load capacity. . . . . . . . . . . . . . . . . . 51
8.6 Modification ofW with change in position. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

9 Direct Optimization–Magnetic Bearings 54
9.1 Choice ofio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
9.2 Symmetric 8-pole bearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9.3 Direct optimal method including smooth saturation effects. . . . . . . . . . . . . . . . . . 59

9.3.1 2-horseshoe example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.4 Direct optimal method including hard saturation effects. . . . . . . . . . . . . . . . . . . . 61

10 Coil Current Solution–Magnetic Stereotaxis System 69
10.1 Unlimited Skid Seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

10.1.1 No-Skid Seed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
10.1.2 Limited-Skid Seed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.2.1 No-Skid Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.2.2 Limited-Skid Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
10.2.3 Unlimited-Skid Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

11 Conclusions 79

A Symmetric 8-pole magnetic bearing 84
A.1 Failure configuration bias linearization currents. . . . . . . . . . . . . . . . . . . . . . . . 86

A.1.1 Case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
A.1.2 Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
A.1.3 Case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.1.4 Case 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.1.5 Case 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.1.6 Case 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
A.1.7 Case 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.1.8 Case 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.1.9 Case 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.1.10 Case 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.1.11 Case 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 C code for determiningW via the reduced gradient method. . . . . . . . . . . . . . . . . . 100
A.2.1 Programfindw.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
A.2.2 Mathematics librarymathstuf.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
A.2.3 Sample bearing data filebrg.dat . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
A.2.4 Data filematset.datneeded byfindw.c . . . . . . . . . . . . . . . . . . . . . . . . . 118
A.2.5 Sample run offindw.c. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

A.3 Mathematicaprogram for solution of direct optimization problem. . . . . . . . . . . . . . 120
A.4 C code for saturating 8-pole bearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122



CONTENTS vii

B Slew rate limiting. 127
B.1 Bounds on current slew rate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
B.2 Decoupling of electrical circuits in a radial magnetic bearing. . . . . . . . . . . . . . . . . 128

B.2.1 Design of the decoupling ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . .130



List of Figures

1.1 A pair of opposed electromagnets.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Two sets of magnets supporting a rotating shaft.. . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Additional constraint for realizable slew rate.. . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Schematic of multi-coil Magnetic Stereotaxis System.. . . . . . . . . . . . . . . . . . . . . 5

3.1 Typical bearing arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Equivalent electrical circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Asymmetric bearing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 3 d.o.f. magnetic bearing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.1 Horse-shoe actuator biased by gravity.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7.1 2-d example of a trajectory out off = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Solution for 1-d example at different bias magnitudes.. . . . . . . . . . . . . . . . . . . . . 43

8.1 Flux resulting from opposite currents in opposed coils.. . . . . . . . . . . . . . . . . . . . 45
8.2 Flux resulting from two sets of opposed coils.. . . . . . . . . . . . . . . . . . . . . . . . . 46
8.3 4 pole symmetric radial bearing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9.1 Comparison of bias linearization and direct optimal method in a 1-d.o.f. actuator.. . . . . . 55
9.2 Power loss for bias linearization and direct optimization in a 1-d.o.f. actuator.. . . . . . . . 56
9.3 Coil 1 in an 8-pole bearing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.4 Direct optimal force-to-current mapping, c=0.25. . . . . . . . . . . . . . . . . . . . . . . . 58
9.5 Load optimal bias linearization force-to-current mapping. . . . . . . . . . . . . . . . . . . 59
9.6 Direct optimal resistive losses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.7 Load optimal bias linearization resistive losses. . . . . . . . . . . . . . . . . . . . . . . . . 64
9.8 Load capacity versus bias level for direct optimal method.. . . . . . . . . . . . . . . . . . . 65
9.9 2-horseshoe saturating actuator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
9.10 Approximate B-H curve for silicon iron. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.11 2-horseshoe force-to-current including saturation. . . . . . . . . . . . . . . . . . . . . . . 66
9.12 8 pole inverse mapping with saturation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
9.13 8 pole bearing with saturation–power loss.. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

10.1 MSS seed in stable no-skid orientation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
10.2 Magnetic Stereotaxis System.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
10.3 2-norm of coil currents versus force orientation for example 1.2.. . . . . . . . . . . . . . . 76
10.4 2-norm of coil currents versus dipole orientation for example 2.1.. . . . . . . . . . . . . . . 78

A.1 8-pole symmetric bearing.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

B.1 Flux induced by a horseshoe winding. . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

viii



LIST OF FIGURES ix

B.2 Circuits includingl p to cancel mutual inductance.. . . . . . . . . . . . . . . . . . . . . . . 131
B.3 Schematic of decoupling ring.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133



Nomenclature

a . . . . . . . . Pole face area

A . . . . . . . Diagonal matrix of pole face areas

A . . . . . . . Anti-symmetric matrix that reduces the rank of a correspondingM matrix

b . . . . . . . . Column matrix of flux densities

b . . . . . . . . Non-dimensional flux density

b . . . . . . . . Vector flux density

B . . . . . . . Component of the decomposition of the bias linearization problems that is common to all force
directions. In the MSS,B has the physical interpretation of relating coil current to flux density
at the seed’s location.

BH . . . . . . Function characterizing theB–H curve for a given material.

Ca . . . . . . Collection of the rows ofV andVs corresponding to active constraints in the direct optimization
method

d . . . . . . . . Right-hand side of the decomposed bias linearization problem

D . . . . . . . Force direction-specific component of the decomposition of the bias linearization problem. In
the MSS,D has the physical interpretation of derivative of B with respect to spatial coordinates.

D . . . . . . . Matrix defined asD ≡ [D′
1m|D′

2m|D′
3m]T

e . . . . . . . . Column matrix whose entries are the element by element square ofi

E . . . . . . . Energy stored in the magnetic field of a magnetic bearing

f . . . . . . . Column matrix of forces produced by an actuator

f . . . . . . . . Vector of force on a dipole

F . . . . . . . A vector function that defines the bias linearization problem

Fkt . . . . . . Kuhn-Tucker conditions

f . . . . . . . Non-dimensional force

g . . . . . . . . Air gap length between pole tip and journal surface in a radial magnetic bearing

go . . . . . . . Nominal air gap length

G . . . . . . . Matrix characterizing the decomposed bias linearization problem

G . . . . . . . Matrix defined byG≡ [M1 +A1| · · · |Mk +Ak]

h . . . . . . . . Magnetic field intensity

H . . . . . . . Matrix whosejth row is i′Mj

H . . . . . . . Matrix analagous toH when the bias linearization problem is re-written in terms of an unknown
vector rather than an unknown matrix

x



LIST OF FIGURES xi

i . . . . . . . . Coil current vector

i . . . . . . . . Nondimensional coil current

io . . . . . . . Non-zero current vector that creates no force

I . . . . . . . . Identity matrix
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ŵ . . . . . . . Dimension of the null space common to allM matrices for a given actuator

α . . . . . . . Ratio of flux density to force

γ . . . . . . . . Dipole moment magnitude

ζ . . . . . . . . Scaling factor for biasing current



LIST OF FIGURES xii

Θ . . . . . . . Angle denoting location of a pole in a radial magnetic bearing

λ . . . . . . . . Denotes a Lagrange multiplier

Λ . . . . . . . Diagonal matrix of non-zero singular values

µo . . . . . . . Magnetic permeability of free space

ϒ . . . . . . . Diagonal matrix relating gap flux density to stored energy

ϒx . . . . . . . Derivative ofϒ with respect to x

φ . . . . . . . . Column matrix denoting magnetic flux in the air gaps of a magnetic bearing

Mathematical Notation

x′ . . . . . . . Denotes transpose ofx

x > 0 . . . . Denotes every element inx is greater than zero

F [x] . . . . . Denotes thatF is a function ofx



Chapter 1

Introduction

1.1 Problem definition

The technology of active magnetic bearings has now been in existence for several decades. Jesse Beams
[BYM46], working at the University of Virginia’s Department of Physics in the 1940’s, is usually given
credit as the “Father of Magnetic Bearings.” Since that time, magnetic actuators have been used in a wide
range of applications: for support of rotating shafts (perhaps the most common application), for vibration
isolation, as robotic “wrists”, and for precision pointing applications.

Ultimately, any magnetic actuator is controlled by the variation of voltage across the machine’s
windings. Typically, a two-level approach is taken in specifying the control voltages. The most basic level
is a fast feedback loop that tracks a requested current for the bearing coils, typically via a transconductance
switching amplifier. If the amplifiers are adequately sized and operated at an adequately fast switching rate,
realization of a desired current will take place at a much smaller time scale than the dynamics of the me-
chanical system being acted upon. In this case, it can be assumed that the requested currents are realized
instantaneously. There then remains the higher-level task of specifying requested coil currents so that a de-
sired set of actuator forces can be realized. The present thesis considers the primarily higher-level problem of
the choice appropriate currents; the lower-level control task is discussed at some length by Keith [KMHW90]
and Fedigan [Fed93].

Although magnetic bearings have been used for a number of different machines with diverse pur-
poses, nearly all of these devices are composed of pairs of opposed electromagnets, as shown in Figure1.1.
Each magnet is able to pull the suspended object only towards itself; two opposed magnets are a configuration
that is sufficient to generate a force of arbitrary sign. The typical actuator is built of sets of opposed magnets
with one set for each controlled force direction. For example, a radial bearing used to support a rotating shaft
typically has a configuration as pictured in Figure1.2.

For the opposed-pair actuator in Figure1.1, the current-to-force relationship is

f = c(i21 − i22) (1.1)

wherec is a constant derived from bearing geometry, andi1 and i2 are the currents supplied to the top and
bottom coils respectively. For this type of actuator, it is relatively straightforward to invert the relationship
between requested current and resulting force so that any desired force can be realized. There are typically
two ways in which this inversion can be approached:

1. the bias current linearization method;

2. the direct optimization method.

The bias linearization method is perhaps the most common method of realizing desired forces in a
magnetic bearing. Bias linearization is a change of variables in terms of bearing currents. Define variablesîo

1
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Mass
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Figure 1.1: A pair of opposed electromagnets.

andîc so that

i1 = (îo + îc)/(2
√

c) (1.2)

i2 = (îo− îc)/(2
√

c)

When transformation (1.2) is substituted into (1.1), force in terms of the new variables is

f = îoîc (1.3)

Any force can then be realized by holding the magnitude ofîo constant and varyinĝic linearly with the desired
force. In terms of the actual coil currents, the rule for realizing any desired force is then

i1 = (îo +
f

îo
)/(2

√
c) (1.4)

i2 = (îo− f

îo
)/(2

√
c)

Bias current linearization has two main advantages. First, it yields a simple formula for currents
to realize any force – this formula is linear in the desired force. Second, the magnitude of the constant (or
biasing) component can be chosen to avoid slew rate limiting. This condition occurs when the requested rate
of variation of currents is faster than can be realized by the actuator’s power amplifiers. Reduced performance
or instability can result. Slew rate limiting is considered in detail in AppendixB.

Although bias linearization is easy to implement, it is not optimal in the sense of minimizing the
power needed to produce a given force. An alternative to bias linearization is the direct optimization method.
The method proceeds by recognizing that (1.1) is linear in(i21) and(i22). Furthermore, to optimally realize
a force in a power sense and also be physically realizable,(i21) and(i22) should minimize a cost functionJ
where

J = (i21)+ (i22) (1.5)
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Cross-section

Rotor

Figure 1.2: Two sets of magnets supporting a rotating shaft.

subject to

i21 ≥ 0 (1.6)

i22 ≥ 0 (1.7)

(i21)− (i22)−
f
c

= 0 (1.8)

This is a classical linear programming problem, and it is easy to see that its solution is

i1 =
√

f/c
i2 = 0

∣∣∣∣ f ≥ 0

i1 = 0
i2 =

√
f/c

∣∣∣∣ f < 0

(1.9)

Although this solution is power-optimal, it has some undesirable characteristics. Consider that

d f
dt

= 2c(i1
di1
dt

+ i2
di2
dt

) (1.10)

Since (1.9) yields i1 = i2 = 0 at f = 0, (1.10) implies thatdi1
dt and di2

dt must be infinite to realize anyd f
dt ; slew

rate limiting is inevitable. To eliminate this problem, extra constraints can be imposed that force slightly
higher cost solutions with realizable slew rates. One such constraint would be

i21i22 ≥ a2 (1.11)

wherea is a constant chosen such that the solution has adequate slew rate properties. The problem can still
be easily solved. The problem is represented graphically in Figure1.3. The solution is the intersection of the
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Figure 1.3: Additional constraint for realizable slew rate.

first quadrant part of constraint (1.11) with the required force line (1.8):

i21 =
f

2c
+

1
2c

√
f 2 +4a2 (1.12)

i22 = − f
2c

+
1
2c

√
f 2 +4a2

At high forces, (1.12) converges to (1.9). At zero force, the currents are non-zero, guaranteeing adequate
slew rate in this crucial region.

In the past, the direct method was less commonly used because of the difficulty of implementing
a square-root in analog circuitry. However, schemes of this type are becoming increasingly more attractive
now that relatively inexpensive digital controllers are widely available.

Although the above inverse strategies have been used successfully in many devices, these strategies
have certain drawbacks.

• They impose artificial constraints on actuator geometry. The actuator must be designed in an opposing
horse-shoe configuration if the force directions are to be decoupled so that the above methods can be
employed.

• They cannot be used to control more general quadratic actuators in which the force directions are fun-
damentally coupled due to the mission of the device. A prime example of such a device is the Magnetic
Stereotaxis System (MSS). Magnetic stereotaxis is a novel therapeutic methodology for the treatment
of brain tumors and other neurological problems. The fundamental idea of magnetic stereotaxis is that
large electromagnetic coils can be used to guide a small piece of implanted permanent magnetic mate-
rial (a “magnetic seed”) along some arbitrary trajectory through brain tissue. The device is represented
schematically in Figure1.4. Incidental damage is reduced by selecting a path that avoids important
brain structures. Once the seed has been maneuvered into a tumor, the seed is heated inductively
by high-frequency magnetic fields. This heating results in highly localized cell death. By succes-
sive movements and heating, a tumor could be destroyed with little damage to the surrounding tissue
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Figure 1.4: Schematic of multi-coil Magnetic Stereotaxis System.

[Mol91]. Alternatively, the magnetic seed could be used to guide the tip of a catheter. This catheter
would then be used to deliver drug treatments directly to sites inside the brain [GRB+94] [RGHG92].

• They have little capability of fault-tolerance. If a coil or its associated amplifier fails, symmetry is lost;
the bearing cannot be controlled. The only way to compensate in terms of the previous schemes is with
redundant horse-shoe pairs [LPGS94].

• The above methods do not necessarily guarantee the best possible performance, particularly in the case
of an actuator with multiple degrees of freedom.

All of these above shortcomings can be remedied by a more general formulation of the current-to-force
relations combined with approaches to the inverse solution that do not rely on a design in which all force
directions are physically decoupled.

Instead of a set of decoupled current-to-force relations like (1.1), a general problem will be consid-
ered of the form

f1 = i′M1i
f2 = i′M2i

...
fk = i′Mki

(1.13)

where f j is the force in thejth force direction,i is a vector of currents requested in the actuator coils, andMj

is a real symmetric matrix deduced from actuator geometry. The dissertation will proceed with a synopsis
of past work germane to this problem. The formulation of general current-to-force relations will then be
considered. The problem will be formulated for a generic Maxwell-force actuator using magnetic circuit
theory. An identical formulation will also be derived for a Lorentz-force machine, the Magnetic Stereotaxis
System. Generalized bias current linearization and direct optimization approaches to the inverse problem will
be developed without regard to the specific implementation of the solution. Since the definition of “optimal”
is solution implementation-specific, the general solution methods will then be applied to both of the specific
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cases of radial magnetic bearings and the magnetic stereotaxis system to yield optimal solutions for each
implementation.



Chapter 2

Literature Review

Literature relevant to the dissertation might be broken down into five categories:

• Mathematical literature on quadratic forms.

• Examples of bias linearization in Maxwell-force actuators.

• Power optimal solutions to the magnetic inverse problem.

• The Magnetic Stereotaxis System.

• Current realization issues.

2.1 Mathematical literature on quadratic forms

The magnetic inverse problem has received some attention in the mathematical literature under the guise
of “joint numerical range of hermitian matrices” and the “algebraic theory of quadratic forms.” The work
on joint numerical range was not written with any physical problem in mind, but it can be interpreted as
conditions on the ability of an actuator to produce forces in all possible directions. Papers that study various
properties of joint numerical range are [BL91], in which Binding and Li address joint numerical range of more
than two matrices; [TU91] on the useful matrix pencil approach to the analysis of the joint numerical range
of two matrices; and Yeung and Tsing [AYT84], with a number of theoretical results about joint numerical
range. Although the algebraic theory of quadratic forms does not deal directly with the magnetic inverse
problem, a number of crucial tools are developed. These include the Witt index of a matrix, and the concept
of a totally isotropic space, both important to the interpretation of the generalized bias linearization problem.
The two seminal works on the algebraic theory of quadratic forms are by Lam [Lam73] and Scharlau [Sch69].

2.2 Examples of bias linearization

Bias linearization has been widely mentioned in the literature. Usually, however, pairs of opposed horseshoes
are considered, and bias linearization is therefore only mentioned in passing. Bias linearization is applied
to radial magnetic bearings in works by Imlach [Iml90], Bornstein [Bor91], Chen and Darlow [CD88], Mat-
sumura and Yoshimoto[MY86], Chiba and Rahman [CR91], Burrows et al. [Bur88], and Lee and Kim
[LK92]. A more elaborate device also controlled via bias linearization is a 6-degree of freedom actuator
discussed by Allan and Knospe [AK91]. The machine is composed of three independent actuators, each of
which controls a force and a torque. Through appropriate choice of biasing currents, the force and torque can
be decoupled and controlled independently. One of the uses of generalized bias linearization is the compu-
tation of fault-tolerating current mappings. An alternative approach to fault tolerance is building an actuator
with redundant sets of horseshoes, as is considered by Lyonset al. [LPGS94].

7
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2.3 Power optimal solutions

The general problem of manipulating an object with an arbitrary array of horseshoe actuators is considered by
Iwaki [Iwa90]. Though this work limits itself to horseshoe configurations, it contains necessary and sufficient
conditions for the actuator to provide all desired forces, and it addresses how currents should be picked when
there is a sufficient arrangement of horseshoes. For the specific problem of radial magnetic bearings, a thesis
by Green [Gre96] considers a heuristic “flexible quadrant control” scheme for realizing both low power losses
and high load capacity while avoiding slew rate limiting. A number of authors use a square-root function in
order to invert the non-linearity of magnetic bearings in an efficient way. This approach is advocated by
Mouille and Lottin [ML92], Lottin, Mouille and Ponsart [LMP94] and Charara and Caron[CC92]. Maslen
et al. [MANS96] consider the square-root scheme and give a detailed examination of why this scheme is
subject to slew rate limiting.

Although not applied specifically to magnetic bearings, there are several works considering the ap-
plication of continuation (or homotopy) methods to constrained optimization problems that are similar to
the present inverse problem. In these works, the satisfaction of the Kuhn-Tucker necessary conditions for
optimality are tracked from a known starting point to a desired solution. In general, these works deal not
only with equality constraints but inequality constraints as well. Most relevant to the present work is a paper
by Huneaultet al. [aAFVJ85], in which a continuation approach is applied to power system optimization.
Analogous to the present work, the initial condition is a no-load optimum that is trivial to determine. Load
on the power system is then increased while changing the system inputs to maintain optimality. Huneault
elaborates further on the application of continuation methods to power systems in [HG90]. Ponrajah and
Galiana [PG92] consider power system optimization and develop on a “elevator predictor-corrector” method
that is particularly suitable for the numerical integrations involved in optimization by continuation. Theoret-
ical aspects of homotopy and continuation algorithms as applied to optimization applications are considered
by Watson and Haftka [WH89] and Allgower and Georg [AG80].

2.4 The Magnetic Stereotaxis System

Another machine that fits into the class addressed by this dissertation is the Magnetic Stereotaxis System. In
[GRB+94], Gillies presents a survey of magnetic manipulators for medical uses, including the MSS. Most
of the work on the MSS has been done at the University of Virginia Department of Physics since the mid-
1980’s by group headed by R. Ritter. The early development of the device, when it consisted of a single
movable coil, is described in[QWL91], [RGHG92] and [Gra90]. This first device was tested successfully in
live dogs. Subsequently, an MSS consisting of 6 fixed coils, the design considered in the present dissertation,
was developed when the single coil machine proved unwieldy for use on humans. A detailed description of
the present machine and a discussion of previous approaches to the magnetic inverse problem in the MSS are
considered in a two-part paper by McNeilet al. [MRW95b] [MRW95a].

2.5 Current realization issues

The avoidance of slew rate limiting is a pervasive theme in this dissertation. Slew rate and a number of other
practical limitations of magnetic bearings are examined by Maslenet al. in [MANS96] and [MHSH89].
Bandwidth limitations arising from eddy currents in magnetic actuators are addressed by Meeker, Maslen
and Noh [MMN95], Feeley [Fee96], and Zmood [ZAK87] for radial bearings, and by Kucera and Ahrens in
[KA95] for axial bearings. Other issues related to the use of switching amplifiers in magnetic bearings are
addressed by Fedigan [Fed93] and in Keith’s doctoral dissertation [Kei93].



Chapter 3

Current-to-force relation: Maxwell force
actuator

Perhaps the most common type of actuator with a homogeneous quadratic relationship between currents
and forces is the radial magnetic bearing. This actuator is an example of a Maxwell force actuator; that
is, an actuator where the forces are developed by a magnetic field acting upon a piece of high magnetic
permeability material. Assuming negligible eddy current effects and a linear flux density to field intensity
relationship with negligible hysteresis effects, a magnetostatic analysis can be employed to obtain the current-
to-force relations for these actuators. If losses from flux leakage and fringing are also assumed negligible,
the applicable magnetostatic field equations become one dimensional. Flux and field intensity at any point
in the bearing can then be solved by circuit theory [Plo78]. An analysis of the magnetic circuits in the
actuator yields a quadratic relationship between coil currents and resulting forces. These force relations will
be derived with the specific example of the radial magnetic bearing in mind; however, the same technique
applies to configurations with other than two degrees of freedom.

An n pole magnetic bearing (as exemplified by Fig.3.1) is characterized byRj , Ni j , φ j , aj , andΘ j

for j = 1. . .n, the reluctance, magnetomotive force contribution, flux, pole face area, and orientation angle
respectively for each pole. Considering that steel or iron has a relative permeability of greater than 1000, the
reluctances of all metal parts of the flux path are neglected; virtually all of the circuit reluctance is due to the
air gap associated with each pole. Positive fluxes are directed out of the stator poles into the rotor by the sign
convention for this model. Positive coil currents pass counter-clockwise around the stator poles when viewing
the pole end from the gap. It is assumed that the only sources of magnetic excitation in the bearing are the
coils wound on each pole. This assumption specifically excludes bearings employing permanent magnets
from this analysis. An equivalent electrical circuit, useful in understanding the development of the governing
magnetic equations, appears in Figure 37.

The application of Ampere’s loop law to the magnetic circuit results inn−1 independent equations:

Rjφ j −Rj+1φ j+1 = Nj i j −Nj+1i j+1 (3.1)

where the reluctance of thejth gap is

Rj =
gj

µoaj
(3.2)

One independent equation results from flux conservation:

n

∑
j=1

φ j = 0 (3.3)

9



CHAPTER 3. CURRENT-TO-FORCE RELATION: MAXWELL FORCE ACTUATOR 10

2

3
4

5

6

7
8

X

Y

Rotor

Stator

Figure 3.1: Typical bearing arrangement

Arranging these equations in matrix form produces


R1 −R2 0 · · · 0

0 R2 −R3
...

...
...

...
...

... 0
0 · · · 0 Rn−1 −Rn

1 1 · · · 1 1




φ =




N1 −N2 0 · · · 0

0 N2 −N3
...

...
...

...
...

... 0
0 · · · 0 Nn−1 −Nn

0 0 · · · 0 0




i (3.4)

This matrix relationship is represented more succinctly by

Rφ = N i (3.5)

whereRcan easily be shown to be nonsingular. The flux in each leg due to the applied currents is then

φ = R−1N i (3.6)

A useful result that can be obtained from (3.6) is the matrixL of self and mutual inductances between the
different coils in the bearing:

L = diag[N1, . . . ,Nn]R−1N (3.7)

Assuming uniform flux density in the air gap, fluxφ j is related to flux densitybj by φ j = bjaj . In matrix
form, this relationship is

φ = Ab (3.8)

whereA is a diagonal matrix of pole face areas. Re-arranging and substituting from (3.5) and (3.8),

b = A−1R−1N i = Vi , V
.= A−1R−1N (3.9)

Note from (3.4) that the matrixN has a nullity of 1. Consequently, one of the currents ini is redundant if
each leg has an independent coil.

Forces produced by the bearing can be computed by variations of the energy stored in the system or
by Maxwell’s stress tensor. A complete discussion of the different methods of calculating magnetic force is
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Figure 3.2: Equivalent electrical circuit

contained in [Sad92]. Here, the energy method will be used under the constant excitation voltage assumption.
Assuming linear materials, the energy stored in a magnetic field is defined in the general case as

E =
∫

1
2µ

b ·bdV (3.10)

whereb is vector flux density and the integral is taken over all space. In the present one-dimensional analysis,
the only component isb along the path direction. Due to the assumptions of no leakage and zero reluctance
of the metal sections of the path, all of the energy is stored in the air gaps:

E =
n

∑
j=1

gj [x]aj

2µo
b2

j (3.11)

The energy can be written in vector form as

E = b′ϒb = i′V ′ϒ[x]Vi (3.12)

whereϒ[x] is a diagonal matrix with thejth entry equal togj [x]aj/(2µo). Note that thegj [x] are the mean
air gap lengths as functions ofx, a set of coordinates specifying the rotor’s position. Coordinatesx1,x2 and
x3 might be associated with translations along theX,Y andZ axes that define some fixed coordinate system,
whereasx4,x5 andx6 might be associated with infinitesimal rotations about theX,Y andZ axes respectively.

Force is defined as

f j = − ∂E
∂xj

= −b′ϒ j b (3.13)

= −i′V ′ϒ jVi
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whereϒ j denotes∂ϒ
∂xj

. Defining the symmetric matrixMj as

Mj = −V′ϒ jV (3.14)

it can be noted that the current-to-force relation is identical in form to1.13:

f j = i′Mj i (3.15)

In the particular case of radial magnetic bearings, the only force components are in theX andY directions
(see Figure3.1). In this case, the position-dependent gap lengths are

gj [x] = gj ,o −x cosΘ j −y sinΘ j (3.16)

wheregj ,o is the length of thejth gap when the rotor is in the centered position. Matricesϒx andϒy can then
be explicitly defined as

ϒx = diag

[−aj cosΘ j

2µo

]
, ϒy = diag

[−aj sinΘ j

2µo

]
(3.17)

whereΘ j is the angular position of the centerline of thejth stator leg.
If one or more of the coils is missing or has failed (Nj i j = 0), then (3.15) still applies. The matrix

K is introduced to relate the reduced order current vector of dimensionm to the full current vector:

i = K ı (3.18)

Matrix K is simply the identity matrix with columns removed corresponding to each failed or missing coil.
Substituting into (3.15) yields:

f j = ı′(K ′MjK )ı (3.19)

Matrix K can also be used to indicate coils wired in series. In this case, the vector of coil currents
can be represented as the product of a matrix times a vector ofindependentcoil currents. For instance, assume
that coils 1 and 2 are wound in reverse series (i2 = −i1). TheK reflecting this coupling would be

K =




1 0 0

−1 0 · · · ...
0 1
...
0 0 · · · 1




It is worth noting thatV ′ϒ jV has a null space of dimension 1. This singularity can be removed by
defining aK with n−1 columns whose columns span the row space ofN.

3.1 Example 1 – Asymmetric Magnetic Bearing

In the past, the problem of determining bias and control currents was only considered for symmetric cases.
Under these conditions, the proper linearizing currents are obtained by inspection. However, when symmetry
is lost, determination of the proper currents is no longer a trivial problem. Take for example the bearing
pictured in Figure3.3. The geometry of this bearing is described in Table3.1, wherea = 1cm2, go = 1mm
andN = 200. The unusual asymmetry of this example is intended only to emphasize the generality of the
result: such asymmetry would seldom be encountered in practice. The point to this example is that the usual
assumptions concerning symmetry are not needed – a result which is particularly useful in permitting the
fault tolerance alluded to in the introduction.
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Figure 3.3: Asymmetric bearing.

Leg θ Area Turns Gap
1 0o a N go

2 70o 2 a 2 N go

3 125o 2 a 3 N go

4 160o a 2 N go

5 240o a N go

6 310o 2 a 2 N go

Table 3.1: Asymmetric bearing parameters.

The reluctance of each air gap is determined by (3.2). Substituting the reluctances into (3.4) gives:

go

µoa




1. −0.5 0. 0. 0. 0.
0. 0.5 −0.5 0. 0. 0.
0. 0. 0.5 −1. 0. 0.
0. 0. 0. 1. −1. 0.
0. 0. 0. 0. 1. −0.5
1. 1. 1. 1. 1. 1.


φ = N




1. −2. 0. 0. 0. 0.
0. 2. −3. 0. 0. 0.
0. 0. 3. −2. 0. 0.
0. 0. 0. 2. −1. 0.
0. 0. 0. 0. 1. −2.
0. 0. 0. 0. 0. 0.


 i (3.20)

Re-arranging according to (3.9), the current to flux density relationship is:

b =
µoN
9go




8 −4 −6 −2 −1 −4
−1 14 −6 −2 −1 −4
−1 −4 21 −2 −1 −4
−1 −4 −6 16 −1 −4
−1 −4 −6 −2 8 −4
−1 −4 −6 −2 −1 14


 i (3.21)
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This example is a radial magnetic bearing; therefore,ϒx andϒy can be obtained directly from (3.17):

ϒx =
a

2µo
diag[1.,0.6840,−1.1472,−0.9397,−0.5,1.2856] (3.22)

ϒy =
a

2µo
diag[0,1.8794,1.6383,0.3420,−0.8660,−1.5321] (3.23)

Because this stator has an independent coil on each leg, one coil will be redundant; matricesMx and
My will both be singular. This singularity can be removed with a suitableK matrix. TheK matrix should
have columns orthogonal to the null space ofV. This null space represents a vector of currents that produces
no flux through the gaps. WhenK is chosen orthogonal to this space, a given flux distribution is then realized
with the least possible power dissipation since all portions of the current are contributing to producing flux.
One such matrix, derived by Gram–Schmidt orthogonalization [HJ85] of theN matrix, is

K =




0.447214 0.255551 0.337645 0.487556 0.182932
−0.894427 0.127775 0.168823 0.243778 0.0914661

0. −0.958315 0.112548 0.162519 0.0609774
0. 0. −0.919145 0.243778 0.0914661
0. 0. 0. −0.785507 0.182932
0. 0. 0. 0. −0.955312


 (3.24)

Note that the choice of this particular matrix is somewhat arbitrary. Any otherK whose columns lie perpen-
dicular to the null space ofV would give the same power-minimizing properties.

The force-current relationships are specified by (3.19) as:

K ′MxK =
(

aµoN2

g2
o

)
4.762 1.865 0.983 −0.395 −3.105
1.865 −12.882 5.985 2.487 0.862
0.983 5.985 −7.667 1.203 2.126
−0.395 2.487 1.203 −1.196 1.731
−3.105 0.862 2.126 1.731 8.076


 (3.25)

K ′MyK =
(

aµoN2

g2
o

)
9.681 −9.828 −2.484 −0.175 −0.533
−9.828 23.695 −2.955 0.426 0.464
−2.484 −2.955 3.961 0.444 0.817
−0.175 0.426 0.444 −1.891 0.673
−0.533 0.464 0.817 0.673 −8.581


 (3.26)

3.2 Example 2 – 3 d.o.f. actuator

As an example of a device with more than two degrees of freedom, consider the device pictured in Figure3.4.
This particular magnetic bearing controlsX andY forces as well as a torque about theZ axis. Each coil is
wound withN turns and has a pole area ofa. The air gaps as a function of rotor position are:

g1 = go−x
g2 = go−y−dβ
g3 = go−y+dβ
g4 = go+x
g5 = go+y−dβ
g6 = go+y+dβ

(3.27)

wherego is nominal gap length.
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Figure 3.4: 3 d.o.f. magnetic bearing.

From (3.4),

go

µoa




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
1 1 1 1 1 1


φ = N




1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 0 0


 i (3.28)

Inverting the left-hand side and dividing bya results in (3.9).

b =
µoN
6go




5 −1 −1 −1 −1 −1
−1 5 −1 −1 −1 −1
−1 −1 5 −1 −1 −1
−1 −1 −1 5 −1 −1
−1 −1 −1 −1 5 −1
−1 −1 −1 −1 −1 5




i (3.29)

By differentiating (3.27) by the rotor degrees of freedom,

ϒx =
(

a
2µo

)
diag{−1,0,0,1,0,0} (3.30)

ϒy =
(

a
2µo

)
diag{0,−1,−1,0,1,1} (3.31)

ϒβ =
(

ad
2µo

)
diag{0,−1,1,0,−1,1} (3.32)

MatricesMx, My, andMβ characterizing the current-to-force and current-to-torque relationships are
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formed from (3.14):

Mx = −µoaN2

12g2
o




−4 1 1 0 1 1
1 0 0 −1 0 0
1 0 0 −1 0 0
0 −1 −1 4 −1 −1
1 0 0 −1 0 0
1 0 0 −1 0 0




(3.33)

My = −µoaN2

12g2
o




0 1 1 0 −1 −1
1 −4 2 1 0 0
1 2 −4 1 0 0
0 1 1 0 −1 −1
−1 0 0 −1 4 −2
−1 0 0 −1 −2 4




(3.34)

Mβ = −µodaN2

12g2
o




0 1 −1 0 1 −1
1 −4 0 1 2 0
−1 0 4 −1 0 −2
1 2 0 1 −4 0
−1 0 −2 −1 0 4


 (3.35)

These three matrices completely define the relationship between coil current and output forces/torques.

3.3 Variation of force with position

It is important to note that the current-to-force relations derived above are a function of the position of the
suspended object. This dependence arises because the reluctance of each air gap varies linearly with the
length of the gap, as shown in (3.2). Consequently, reluctance matrixR is a linear function of rotor position.
However,R is inverted to obtain the force relations; the dependence of force on position is therefore not
linear.

The position-dependence of each air gap can be specifically included in theR matrix. An exact
expression for position-dependent force can then be obtained by inverting this symbolic matrixR and then
forming the force relations via (3.15). However, the symbolic inversion ofR is only possible for matrices
of low dimension. An alternative formulation that does not involve inverting a symbolic matrix is a Taylor
series expansion of force in terms of displacements. For small displacements, it is sufficient to truncate this
expansion after the first term:

f j = i′
(

Mj
∣∣
x=0 +

k

∑
q=1

xq
∂Mj

∂xq

∣∣∣∣
x=0

)
i (3.36)

The derivatives ofMj can be evaluated analytically:

∂R−1

∂xj
=−R−1 ∂R

∂xj
R−1 (3.37)

Eq. (3.37) can then be used to evaluate the derivatives ofV:

∂V−1

∂xj
=−R−1 ∂R

∂xj
R−1N =−R−1 ∂R

∂xj
V (3.38)

Finally, the derivatives ofMj are

∂Mj

∂xq
=

∂
∂xj

(−V ′ϒ jV)
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=
∂V
∂xj

′
ϒ jV +V ′ϒ j

∂V
∂xj

(3.39)

= V ′ ∂R
∂xj

′
R−Tϒ jV +V′ϒ j R

−1 ∂R
∂xj

V

As an example of the above procedure, a one-term taylor expansion of force is computed for a
symmetric 8-pole bearing in AppendixA.



Chapter 4

Current to force relations: Lorentz force
actuator

The Magnetic Stereotaxis Machine is an example of a Lorentz force actuator; that is, an actuator wherein
forces are derived by an electromagnet acting upon a piece of permanent magnetic material. Although
Lorentz-type devices are usually linear, peculiarities of this particular machine give it a set of quadratic
current-to-force relationships identical in form to those derived previously for Maxwell force actuators.

4.1 Governing Dipole Equations

Since the dimensions of the permanent magnet seed are very small compared to the size of the superconduct-
ing coils, the seed can be idealized as a point dipole. The magnetic properties of the seed are summarized by
the seed’s dipole moment,m. The direction of this vector is the same as the direction of magnetization in the
seed. The magnitude ofm is the product of the magnetization and volume of the seed.

Derivation of the forces and torques on a dipole due to an applied magnetic field can be found in the
literature [Jac75]. Defining p as a position vector locating the seed relative to the center of the helmet, the
force on the seed is

f[p] = ∇(m ·b[p]) (4.1)

and the torque is
t[p] = m×b[p] (4.2)

4.2 Formulation of Current-to-Force Relationships

Equations (4.1) and (4.2) specify the force and torque respectively on the dipole seed, but they do not imply
any particular basis in terms of which these vectors are represented. A computationally useful form of these
equations can be obtained by defining a basis of orthogonal vectorsn1,n2 andn3 that are fixed at the center
of the helmet. With these vectors, define

p = xn1 +yn2 +zn3

m = m1n1 +m2n2 +m3n3

f = f1n1 + f2n2 + f3n3

b = b1n1 +b2n2 +b3n3

(4.3)

Sincem is not a function ofp, (4.1) can be written in matrix form as

f1 = m′ ∂b
∂x

18
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f2 = m′ ∂b
∂y

(4.4)

f3 = m′ ∂b
∂z

where(′) denotes transpose.
Equation (4.4) defines the field-to-force relation in a particular reference frame, but the connection

between coil currents and the magnetic field,b, must still be defined. Since the permeability of the seed is
very close to that of free space, it is appropriate to characterize the field at a point as a linear superposition
of field contributions created by each of the six coils. Furthermore, the contribution of any particular coil is
linearly proportional to the current in that coil. The relationship between coil current and field can then be
concisely represented in matrix notation as

b[x,y,z] = B[x,y,z] i (4.5)

wherei is a column matrix of coil currents andB is a 3×6 matrix dependent on seed position. Thejth column
of B represents the contribution of thejth coil to the field at[x,y,z] in response to a unit of current in the coil.

Spatial derivatives of the field also follow the same rule of superposition. Coil currents are related
to these derivatives by the differentiation of (4.5):

∂b
∂w

=
[

∂B[x,y,z]
∂w

]
i where w = x,y,z (4.6)

Defining

D1 =
∂B
∂x

; D2 =
∂B
∂y

; D3 =
∂B
∂z

(4.7)

and referring to (4.4), a particular force component is

f j = m′Dj i (4.8)

For a given dipole orientation, all force components can be collected into the expression

f =


 m′D1

m′D2

m′D3


 i (4.9)

Eq. (4.8) appears to be linear ini. However, peculiarities of the MSS makem a function ofi. There
are several crucial observations that can be made about the motions of a permanent magnet seed through
neural tissue due to a slowly varying magnetic field. First, there is a certain threshold force that must be
exceeded for translational motion to occur. Second, the resistance of the seed to rotation is negligible, as
has been observed experimentally [Gra90] [MRW95a]. From (4.2), it can be noted that torque on the seed is
zero only whenm is aligned withb. Furthermore, ifm is parallel tob, a small perturbation inm produces a
torque that tends to re-alignm andb. The converse is true ifm is antiparallel tob. Since the seed is free to
rotate, it will align with the only stable equilibrium orientation:m ||b. Since there is a considerable threshold
force that must be applied before translational motion begins, the seed is assumed to line up withb before
any change in seed position occurs.

The constraint that the dipole moment is aligned with the flux density field is written as

m =
|m|
|b| b (4.10)

Substituting from (4.5), the dipole moment in matrix notation is

m =
γBi√
i′B′Bi

(4.11)
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whereγ is a constant equal to|m|. Combining (4.11) with the previously developed current to force relation
(4.8) yields

f j =
γ i′B′Dj i√

i′B′Bi
(4.12)

By employing the coordinate transformation

i =
ı
γ
√

ı′B′Bı (4.13)

the denominator of (4.12) is removed, leaving a quadratic inı:

f j = ı′B′Dj ı (4.14)

Eq. (4.14) is quadratic inı. For ease of manipulation, it is preferable to manipulate quadratics in
terms of operations on symmetric matrices. Any square matrix can be represented as the sum of a symmetric
and an anti-symmetric matrix [HJ85]. A quadratic formed from the anti-symmetric part is always zero;
therefore, only the symmetric part ofB′Dj contributes toı′B′Dj ı. DefineMj as the symmetric part ofB′Dj :

Mj =
1
2
(D′

jB+B′Dj) (4.15)

The force relations can now be written in terms of the symmetric matricesMj : a homogeneous quadratic
form identical to (1.13):

f j = ı′Mjı (4.16)



Chapter 5

Realizability of arbitrary forces

This chapter considers conditions ensuring that a force can be produced in every intended direction by some
set of input currents. Knowledge of these conditions is vital to the successful design of magnetic actuators.
Previously, actuators were designed in opposed pairs, ensuring that all forces could be produced. Although
such a design is sufficient to produce all forces, it will be shown that it is not necessary. More general
conditions will be presented that also ensure that every force can be realized. These conditions are of special
interest in the case of coil failures; they can be used to determine which failure configurations are and are not
catastrophic.

The goal of all forces being realizable can be precisely defined in a mathematical sense. Define the
setW [] to be

W [M1, . . . ,Mk] =




i′M1i
...

i′Mki


 ∈ ℜk : i ∈ℜn (5.1)

W [] is the set of all possible forces that can be produced by a given actuator characterized by(M1, . . . ,Mk).
A successful actuator design should satisfy the following proposition:

Proposition 5.1 W [M1, . . . ,Mk]≡ℜk

The conditions for which Prop.5.1is true have been studied in the literature for some special cases.
Elegant results have been obtained in [Iwa90] for the case in which allM matrices are diagonal or simul-
taneously diagonalizable. Results have also been obtained in the literature for 2-d.o.f. actuators with no
restrictions on the structure of theM matrices. These two results will be explored; then, necessary and
sufficient conditions for the truth of Prop.5.1under the constraint of finite slew rate will be explored.

5.1 DiagonalM matrices

If all M matrices are diagonal, the current-to-force relations can be written as

f =




diagonal ofM1
...

diagonal ofMk


e= K e ; K ∈ ℜk×n (5.2)

where

e =




i21
...
i2n


 (5.3)

21
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Since theM matrices are diagonal, the problem can be converted to a linear problem in terms of the squares
of the currents. For Prop.5.1to be true, every element inf must be realizable by somee≥ 0 in the sense that
every component of e is≥ 0).

Proposition 5.2 If Rank[K]≤ k, Prop.5.1is false.

Proof: If Rank[K] < k, the system of equations is underdetermined. Any force with a component
perpendicular to the columns ofK is not realizable. SinceRank[K] < k, there is at least one one-dimensional
space of unrealizable forces. IfRank[K] = k, K is invertible, yielding a unique, one-to-one mapping between
e and f . For anyechosen with a component less than zero, the forcef = Ke is not realizable.

For n > k, partition K into a set ofk linearly independent columns,K1, and a set of remaining
columns,K2:

K = [K1|K2] (5.4)

Likewise, partitione into e1 ande2 corresponding to the partitioning ofK so that

f = K1e1 + K2e2 (5.5)

This equation can be solved fore1:
e1 = K−1

1 f −K−1
1 K2e2 (5.6)

The possible solutions fore that realize a given force are then

e =
[

K−1
1
0

]
f +
[ −K−1

1 K2

I

]
e2 (5.7)

wheree2 is chosen arbitrarily. Equation (118) can be written more succinctly as

e= ef [ f ]+eb[e2] (5.8)

where

ef [ f ] =
[

K−1
1
0

]
f (5.9)

and

eb[e2] =
[−K−1

1 K2

I

]
e2 (5.10)

Theef component ofe is mandatory for creating the desired forcef . However, by direct substitution, it can
be seen that theeb component ofe creates no force:

Keb = K1(−K−1
1 K2)e2 +K2e2 = 0

Thougheb does not create any force, it is essential to generating a realizablee: all the elements inef are
not necessarily greater than or equal to zero for a givenf , so an appropriateeb must be included to make all
elements ine greater than or equal to zero and therefore realizable.

Proposition 5.3 The existence of a vector e∗
2 ∈ ℜn−k such that

−K−1
1 K2e∗2 > 0

e∗2 ≥ 0

is a necessary and sufficient condition for Prop.5.1to be true.
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Sufficient:Assumet that there exists a vectore∗2 satisfying the above conditions. Lete2 = coe∗2 where
co is defined as:

co =

∣∣∣∣∣ min(K−1
1 f )

min(−K−1
1 k2e∗2)

∣∣∣∣∣ (5.11)

Note that since(−K−1
1 k2e∗2 > 0) by definition, the denominator ofco is never zero, andco is always finite.

This choice ofe2 yields:
e1 = K−1

1 f −coK−1
1 K2e∗2 (5.12)

Sinceco ≥ 0, by (5.11), thee2 component ofe must be greater than or equal to zero, sincee∗2 ≥ 0. Further-
more, this choice ofco guarantees that every element ise1 must be greater than or equal to zero, sinceco

scales(−K−1
1 K2e∗2) so that its smallest component is positive and of equal magnitude to the most negative

component in(K−1
1 f ). Sincee1 ≥ 0 ande2 ≥ 0, e≥ 0 and is therefore realizable. Since the choice off is

arbitrary, all forces can be produced by a realizablee.
Necessary:SinceK−1 is non-singular, somef can be chosen so that

K−1 f =




−1
...
−1




For this particularf ,

e1 =



−1
...
−1


−K−1

1 K2e2

If there is no(−K−1
1 K2e∗2 > 0), r1 cannot be made greater than or equalt to zero for thisf . The required

conditions are therefore necessary.
The required current vectoreb[e∗2] can be considered a biasing vector; that is, a vector of non-zero

currents that produces zero forces in the actuator. This set of currents heuristically “pre-tensions” the system
so that forces can be produced in an arbitrary direction, analogous to the way that gravity pre-tensions the
system in Figure5.1. Gravity provides a downward force; by counteracting lesser or greater amounts of the
force of gravity, a net force in either an up or down direction can be produced, even though the horse-shoe
magnet can only pull upwards.

Although Prop. 122 only applies for a system with diagonal matrices, it does imply an interesting
design constraint for any Maxwell-force actuator:

Corollary 5.1 Any Maxwell-force actuator must have at least k+ 1 poles as a necessary condition for all
forces to be realizable.

Proof: The flux-to-force relationship is characterized in (51) as

f j = −b′Λ j b

whereΛ j is a diagonal matrix. In terms of fluxes rather than currents, every actuator assumes a diagonal
form regardless of the pattern in which the coils are wound. For fluxes to be chosen that realize all arbitrary
forces, exactly the same argument as in Prop. 114 and in the “necessary” part of Prop. 122 can be made,
simply substituting fluxes for currents. However, flux conservation constraints preclude all possible sets of
gap fluxes from being realized;k+1 poles is not a sufficient condition for all forces to be realized.
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i

mass

Figure 5.1: Horse-shoe actuator biased by gravity.

5.2 Necessary conditions for realizability of arbitrary forces in the lit-
erature

The other relevant case previously considered in the literature is a 2 degree-of-freedom actuator with no
restrictions on the form of theM matrices other than symmetry. This problem has been considered in math-
ematics literature under the guise of “joint numerical range of hermitian matrices,” with no connection to a
physical problem [AYT84] [TU91] [BL91]. The relevant result is

Theorem 5.1 Given the two degree-of-freedom force relation

f1 = i′M1i

f2 = i′M2i

Prop. 114 is true only if the matrix pencil c1M1 +c2M2 is indefinite for all real c1,c2.

In demonstrating this result, it is first important to consider the forces producible for any single
matrixM.

Lemma 5.1 The quadratic form f= i′Mi, where M is real and symmetric, can produce f< 0 and f > 0 if
and only if M is indefinite (has both positive and negative eigenvalues).

Proof: Let M = ΦΛΦ′ be the eigenvalue decomposition ofM. SinceM is real and symmetric, all
entries in diagonal matrixΛ are real. Since the ordering of the entries inΛ is arbitrary, they can be assumed
to be specified in descending order such thatΛ can be partitioned as

Λ =


Λ1 0 0

0 0 0
0 0 −Λ2




whereΛ1 represents the positive eigenvalues ofM, −Λ2 represents the negative eigenvalues ofM, and all
elements ofΛ1 andΛ2 are greater than zero. Definex≡Φ′i and letx be partitioned into 3 parts corresponding
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to the partitioning ofΛ. Then, force written in terms ofx is

f = x′1Λ1x1−x2Λ2x2

In this form, each termx′1Λ1x1 andx′2Λ2x2 can only produce a result greater than zero forx1 6= 0 andx2 6= 0,
respectively.

One way to demonstrate the “if” part of the lemma is to pickx1 6= 0 andx2 = 0 to produce a positive
result andx2 6= 0 andx1 = 0 to produce a negative result.

For the “only if”, assume thatM is indefinite and results of only one sign can be produced. Then,
eitherΛ1 or Λ2 must be of dimension 0, in which case,M is either definite or semidefinite.

The result from Lemma5.1can be extended to show the necessity of Theorem5.1. Parameterize the
force f as

f =
{

c1

c2

}
(5.13)

wherec1 andc2 are arbitrary real numbers. If there is ani that realizes this force,

f ′ f = c1i′M1i +c2i
′M2i = c2

1 +c2
2 (5.14)

Since(c2
1 +c2

2) is always greater than or equal to zero, for the above to be true,

i′(c1M1 +c2M2)i ≥ 0 (5.15)

Alternatively, a force of

f =−
{

c1

c2

}
(5.16)

could also be desired. In this case,

f ′ f =−c1i′M1i−c2i
′M2i = c2

1 +c2
2 (5.17)

implying
i′(c1M1 +c2M2)i ≤ 0 (5.18)

By Lemma5.1, for (5.15) and (5.18) to both be realized,(c1M1 +c2M2) must be indefinite. Sincec1 andc2

are arbitrary real numbers,(c1M1 +c2M2) must be indefinite for all realc1,c2 for all forces to be realized.
Note that the same proof of necessity would also apply to a system with arbitrarily many force

directions: If the forces produced by an actuator are characterized by(M1, . . . ,Mk), every possible linear
combination ofM matrices must be indefinite for all possible forces to be produced.

5.2.1 Test of indefiniteness for two force directions

Although the extension of Theorem5.1to more than two force directions is difficult to test, the 2 d.o.f. case
can easily be evaluated. Since the inertia of a matrix is not changed by scaling the matrix by a non-zero
constant, an equivalent of Theorem5.1is that

Q[s]≡ (M1 +sM2) (5.19)

must be indefinite for alls. However,Q[s] need not be exhaustively tested over alls. The eigenvalues of
a polynomial matrix likeQ are known to vary smoothly withs; the only possible changes in sign (and thus
changes from indefinite) occur at values ofswhereQ[s] has a zero eigenvalue. These values ofscan be found
by solving fors that satisfies

detQ[s] = 0 (5.20)

for s. Note that detQ[s] is at most annth order polynomial in s. Then, ifM1 andM2 are indefinite, and every
Q[s] for ssatisfying (5.20) is indefinite, Q[s] is indefinite for allsand Theorem5.1is satisfied.
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This test will work unmodified in most cases; however, there is the pathological case in which the
determinant ofQ[s] is zero for alls. The same sort of test can be used in this case as well, but the zero
eigenvalues must be factored out so that the characteristic polynomial is only zero at the zero crossings
of the eigenvalues. The zero eigenvalues are factored out by first forming the more general determinant
det(Q[s]−λI). This is the characteristic polynomial that would be used to find the eigenvalues ofQ[s] at
a particular value ofs. This polynomial is then divided byλ to eliminate the zero eigenvalue. Since only
the zero crossings are of interest,λ is then set to zero, andQ[s] is tested at the roots of the reduced-order
polynomial.

For example, consider the case

M1 =


0 1 0

1 0 0
0 0 0


 M2 =


0 0 1

0 0 0
1 0 0




The matrixQ[s] associated with these two matrices is always singular, butM1 andM2 do not share a common
zero eigenvalue that might merely be reduced out. Formingdet(Q[s]−λI) yields

λ−λ3+ λs2 = 0

Factoring out aλ and settingλ to zero yields

s2 +1 = 0

The roots are purely imaginary, indicating no zero crossings. Since there are no zero crossings, the signs of
the eigenvalues do not change from the±1 pair ofM1. M1 andM2 satisfy the necessary conditions for all
forces to be produced.

5.3 Conditions for a solution realizable with finite current slew rate

Because the actuator currents are realized by applying voltages, the requested change in current with respect
to time, di

dt , must be finite (see AppendixB). As long as a finited f
dt is requested,di

dt is finite if every element
in di

d f is finite.
If a proposed inversei[ f ] is in hand, it is easy enough to check that the gradient ofi[ f ] is finite

everywhere in the range of magnitudes of interest. If the inverse mappingi[ f ] is not known, one might
instead consider if, for a given point, there exists a continuous current trajectory leading away from the point
in every possible force direction.

Lemma 5.2 For an actuator with a current-to-force relation described by (1.13), a current vector i is on a
finite current slew rate realizable solution manifold only if the matrix

d f
di

= 2


 i′M1

...
i′Mk


≡ 2H (5.21)

has a rank of k.

If H is not of rankk, then the force cannot be modified in any direction with a component in the null space of
HH ′.

It has been shown in the literature [AYT84] that Theorem5.1 is a sufficient as well as necessary
condition for all forces for be produced fork = 2 andn > 2. However, this condition admits many cases that
are physically unrealizable. For example, consider

M1 =


1 0 0

0 −1 0
0 0 0


 ; M2 =


0 1 0

1 0 0
0 0 0


 (5.22)
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This form arises from three-pole radial magnetic actuators. In this case, theM matrices are 3×3 because an
independent coil is wound on each leg. There is a common null space inM1 andM2 caused by conservation
of flux constraints. The eigenvalues ofQ[s] ≡ M1 +sM2 are 0 and±√1+s2. Regardless of the choice of s,
there is always one positive and one negative eigenvalue. MatrixQ[s] is indefinite for alls, and all forces are
therefore realizable. However, when the force relations

f1 = i21− i22
f2 = 2i1i2

(5.23)

are examined, it is apparent that the only way to realize a zero force is withi1 = i2 = 0. If i1 andi2 are zero,
the resultingH[i] is also zero and therefore singular: even thoughM1 andM2 can produce every force, they
cannot produce them without requiring an infinite current slew rate atf = 0.

5.4 General realizability condition

A more restrictive condition is therefore needed that tests not only if a set ofM matrices can realize all
forces, but if those forces can be produced by a scheme that requires a finite current slew rate (that is, obeys
Lemma5.2at every point). This condition is:

Theorem 5.2 Every possible set of forces can be obtained by a continuous manifold with finite gradients if
and only if there exists a current vector io such that

i′oM1io = 0
...

i′oMkio = 0

and

H[io]≡




i′oM1
...

i′oMk




is of rank k.

Necessary:If io does not exist, Lemma5.2cannot be satisfied atf = 0. If Lemma5.2is not satisfied,
there are some directions in which the differential current required to cause a differential change from zero
force is infinte The actuator is subject to slew rate limiting about zero force if noio exists.

Sufficient:The strategy for showing sufficiency is to show that ifio exists, a path can be created from
zero force to any force within a finite ball about zero force. If every force inside the ball can be realized, then
a force of with a magnitude lying outside the ball can be realized by simply scaling the currents required to
produce the largest force inside the ball in the same direction as the desired force.

Define currenti to be

i =
1
ε

io + εi1 (5.24)

define currenti1 to be

i1 =
1
2

H[io]′(H[io]H[io]′)−1z≡Φz (5.25)

wherez is a vector of the same dimension asf . Substitute the definition ofi into the force relations (1.13):

f j = i′Mj i

= (
1
ε

io + εi1)′Mj(
1
ε

io + εi1)

= (
1
ε
)2i′oMj io +2i′oMj i1 + ε2i′1Mj i1 (5.26)
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Since(i′oMj io = 0) by definition,
f j = 2i′oMj i1 + ε2i′1Mj i1 (5.27)

The current-to-force relationships for each direction characterized by (5.27) can be combined into one ex-
pression as:

f = 2H[io]i1 + ε2




i′1M1i1
...

i′1Mki1


 (5.28)

Substituting from (5.25) for i1 yields:
f = z+ ε2δ (5.29)

where

δ =




z′Φ′M1Φz
...

z′Φ′MkΦz


 (5.30)

The first task is to get a bound on the magnitude ofz required to produce a given magnitude off . Using
(5.29) and the triangle inequality,

|z| = | f − ε2δ|
≤ | f |+ ε2|δ| (5.31)

(5.32)

Any individual entry,δ j , in δ will be less than or equal tōσ[Φ′MjΦ]|z|2 by definition of maximum singular
value. A bound on|δ| would then bec|z|2, wherec2 is defined as

c2 = k

(
max

j
σ̄[Φ′Mj Φ]

)
(5.33)

Substituting into (5.31),
|z| ≤ | f |+(εc|z|)2 (5.34)

This expression can be solved for|z| to yield

|z| ≤ 1−
√

1−4c2ε2| f |
2c2ε2 (5.35)

≤ | f |+c2ε2| f |2 for smallε

The strategy is to realize arbitrary forces by starting from the initial conditionz= 0 at zero force
and integratingdz/d f to reach the desired force. The change in force with respect toz is

d f
dz

=


I +2ε2


z′Φ′M1Φ

...
z′Φ′MkΦ




 (5.36)

Gradient matrixd f/dzmust be inverted to obtaindz/d f , which is then integrated along the path from initial
condition to desired current. If there is no non-zero real vectorx for whichx′(d f/dz)x = 0, thend f/dzmust
be invertible. If the condition

2ε2σ̄


z′Φ′M1Φ

...
z′Φ′MkΦ


< 1 (5.37)

is satisfied, there is no way for(x′(d f/dz)x = 0) to be true. Inside some arbitrary ball| f | ≤ fmax, |z| is
bounded by (5.35). Knowing this bound, anε can then be picked so that (5.37) is always true within the ball,
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and therefored f/dz always invertible inside the ball. It is then possible to start atf = 0,z= 0 and march
along an arbitrary trajectory inside the ball, moving from force to force with finite gradients. For forces of
magnitude greater thanfmax, a solution with finite gradients results from a simple scaling of thei that realizes
| f |= fmax.

This inverse scheme is most likely not thebestsmooth inverse possible, but the point is to show that
the existence ofio allows all forces to be produced, is necessary for an inverse with finite gradients, and has
at least one inverse solution with finite gradients.

A great similarity between Theorem5.2for a general actuator and Proposition 122 can be noted. In
each case, the existence of a biasing current vector is a necessary and sufficient condition for all forces to be
produced.

5.4.1 Numerical discovery of io
If a valid io does exist, it is relatively easy to find numerically. To satisfy Theorem5.2, a vectorio must
satisfy:

i′oM1io = 0
... (5.38)

i′oMkio = 0

i′oio−1 = 0

Denote these conditionsF [io] = 0 for short. The last condition is included so that the zero vector is discounted.
An io that satisfies the conditions can then be found by a modified Newton-Raphson iteration.

Define matrixĤ as theH from Lemma5.2augmented by the rowi′. If F [i] is linearized about the
jth iteration,i j ,

F [ik + δi]≈ F [ik]+2Ĥ[ik]δi (5.39)

Setting the approximation ofF[ik + δi] equal to zero and solving for the smallestδi that will satisfy the
conditions yields:

δi =−1
2

Ĥ ′(ĤĤ ′)−1F [ik] (5.40)

Thek+1 approximation ofio is then
ik+1 = ik + δi (5.41)

This iteration usually converges very quickly when anio exists.
Note that this iteration relies upon the fact thatH is of rankk to compute the subsequentik+1. There-

fore, any vector converged upon by this iteration satisfies the condition thatH[io] is of rankk automatically.



Chapter 6

Inverse Solution – Bias Linearization

For a typical magnetic actuator, there are many more currents to be specified than forces to be produced. Any
desired force might then be realized by many different sets of coil currents. Since many solutions might be
possible, the task is not merely to find a set of currents that realizes every desired force, but to produce each
force in the “best” possible way. In this chapter, the criteria for a “good” inverse is ease of implementation;
an inverse in which each current is merely a linear function of force is desired. This criterion is reduced to a
general mathematical problem form, and different methods of solving this problem are explored.

6.1 Formulation of the generalized bias linearization problem

In the Chapter 1, the bias linearization of a 2-horseshoe actuator was considered. By direct substitution, one
can verify that the change of variables

i1 = 1
2
√

c(îo + îc)

i2 = 1
2
√

c(îo− îc)
(6.1)

and the current to force relation
f = c(i21− i22) (6.2)

yields the bilinear form
f = îoîc (6.3)

If îo is held constant, force is a linear function ofîc.
For an actuator that produces force in multiple directions, one desires a change in variables that

results in a bias current,îo, and a control current associated with each force direction,îc1, . . . , îck. This change
of variables should be chosen to transform the force relations into the form

f1 = îoîc1
...

fk = îoîck

(6.4)

in terms of the transformed currents. The desired result can be written in matrix form as

f j = î′M̂ j î (6.5)

for each force direction where

î =




îo
îc1
...

îck


 (6.6)

30
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andM̂ j is a (k+ 1)× (k+ 1) matrix filled with zeros except for the{ j + 1,1} and{1, j + 1} entries, which
are equal to1

2.
For example, theM̂ matrix corresponding to the 2-horseshoe case is

M̂1 =
[

0 1
2

1
2 0

]

andî = {îo, îc}T . Substituting into (6.5) yields f = îoîc.
Analogous to the 2-horseshoe case, a linear transformation betweenî andi is desired. This transfor-

mation will be denoted
i = Wî (6.7)

For example, the transformation for the horseshoe case (6.5) can be written in matrix form as

i = Wî =
1

2
√

c

[
1 1
1 −1

]
î (6.8)

For the general case, 1 bias current andk control currents are mapped inton coil currents, implying
thatW is ann× (k+1) matrix. Substituting (6.7) into the generalized force relations (1.13) yields

f1 = î′W′M1Wî
...

fk = î′W′MkWî

(6.9)

If W transforms the force relations into the desired form (6.5), eqs. (6.5) and (6.9) can set equal to
one another, producing

î′W′M1Wî = f1 = î′M̂1î
...

î′W′MkWî = fk = î′M̂kî

(6.10)

For all forces to be realized, (6.10) must apply regardless of the choice ofî:

W′M1W = M̂1
...

W′MkW = M̂k

(6.11)

Equation (6.11) is the generalized bias linearization problem. To control an actuator using a bias linearization
scheme, the task is to find a matrixW that satisfies (6.11). If such aW is found, the desired form (6.4) is
realized by transformation (6.7), and an inverse mapping that realizes any force is

i = W




îo
f1/îo

...
fk/îo


 (6.12)

6.1.1 Note on choice of reference frame

If a given actuator can be bias linearized with theM matrices derived in one set of orthogonal coordinates, the
actuator can be bias linearized in any set of orthogonal coordinates. This fact can be shown by considering
the transformation of force in the “A” reference frame,fA to force in the “B” reference frame,fB via the
orthonormal transformation matrixBTA:

fB = BTA fA

= îo BTA




îc1
...

îck




(6.13)
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Force in the “B” frame is still linear in the control current magnitudes. Linearization matrixW can then be
converted to the new reference frame by

W′
B =

[
1 0
0 BTA

]
W′

A (6.14)

6.2 A necessary condition for bias linearization

In the literature on quadratic forms [Lam73], a vectorx is known as anisotropic vectorwith respect to a
symmetric matrixM if

x′Mx = 0 (6.15)

Likewise, two isotropic vectors,x1 andx2 form atotally isotropic spaceif every linear combination ofx1 and
x2 is also an isotropic vector. It is important to note that most collections of isotropic vectors do not form an
isotropic space.

An isotropic vector,x, can achieve a zero result with respect toM in two ways:

1. x is an eigenvector ofM corresponding to a zero eigenvalue ofM.

2. x produces equal and opposite contributions from a positive and a negative eigenvalue ofM. For
example, consider

M =
[

1 0
0 −1

]
; x =

{
1
1

}
A zero is produced by adding together a 1 from the first diagonal entry and a−1 from the second
diagonal entry.

A totally isotropic space results from a combination of sets of paired eigenvalues and zero eigenval-
ues. For example, consider theM matrix

M =




1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0




One possible basis that spans a totally isotropic space is the columns of




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1




The first column takes advantage of the first eigenvalue pair, the second column of the second eigenvalue pair,
and the last column the zero eigenvalue. Any linear combination of these vectors is also an isotropic vector.

A relatively intuitive result that is proven in [Lam73] is that the dimension of the largest totally
isotropic space realizable for any particular matrix is the sum of the number of positive and negative eigen-
value pairs plus the number of zero eigenvalues. The dimension of the maximal totally isotropic space will
be denotedw. For example, if someM matrix had the eigenvalues:

{1,−1,2,−3,4,5,0,0}

the dimension of the maximal totally isotropic space,w, would be equal to 4, since there are two± eigenvalue
pairs and two zero eigenvalues.
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Generally, however, there are an infinite number of maximal totally isotropic spaces. Consider the
matrix 

1 0 0
0 1 0
0 0 −1




In this case, there is one eigenvalue pair, so the dimension of the maximal totally isotropic space is one.
However, the vector

x =




sinθ
cosθ

1




is isotropic for any choice ofθ; there are in infinite number of one-dimensional maximal totally isotropic
spaces. However, since the dimension of the maximal totally isotropic space is one, no two of this infinite
number of spaces can be combined to form a two dimensional isotropic space.

Upon examining (6.11), it can be seen that the 2nd through(k+1)th columns inW are the basis of a
k-dimensional totally isotropic space with respect to everyM matrix characterizing a particular actuator. For
a k-dimensional isotropic space to exist for everyM, everyM must havew≥ k. Furthermore, it was shown
in the previous section that if an actuator can be linearized in one reference frame, it can be linearized in any
reference frame; therefore any linear combination ofM matrices must havew≥ k.

Consider the special case when all theM matrices have a common null space denoted byz. Let the
dimension of this common null space be denoted ˆw. For every vectorx in z,

Mj x = 0; j = 1, . . . ,k; x∈ z

The lastk columns ofW can have no component inz.

Proof: Assume that there is aW that satisfies (6.11) and, without loss of generality, let the
second column ofW be an element ofz. From (6.11), W′

1M1W2 = 1. However, sinceW2 is in z,
W′

1M1W2 = 0. There is a contradiction, so the assertion must be true.

If ŵ > 0, the minimum necessaryw for bias linearization must then bew≥ k+ ŵ. Althoughz is a totally
isotropic space, it cannot contribute toW.

These results can be summarized as:

Theorem 6.1 Consider a set of real symmetric matrices M1, . . . ,Mk that satisfies Theorem5.1necessary for
the realizability of all forces. Let w denote the dimension of the maximal totally isotropic space of a particular
matrix, and letŵ denote the dimension of any null space common to all of the M matrices. For a set of bias
linearizing currents to exist for the set of M’s, every linear combination of M matrices must have w≥ k+ ŵ.

6.2.1 2 d.o.f. testing of the necessary condition

As with Theorem5.1, only the two degree-of-freedom case is feasible to test. The testing of Theorem 197
proceeds along the same basis as the testing of Theorem5.1outlined in §5.2.1. For the 2-d.o.f. case, a matrix
Q(s) is defined as

Q(s)≡ (M1 +sM2) (6.16)

wheres is an arbitrary real number. As in §5.2.1, if the necessary condition applies for alls, the condition
applies for all linear combinations ofM1 andM2. Since Theorem5.1 is a precondition for Theorem 197,
all values ofs where zero crossing occur must be found in accordance with the procedures in §5.2.1, and
Theorem5.1 must be satisfied at each zero crossing as well as forM1 andM2. Then, the conditions for
Theorem 197 can be tested. Since, once again, only the signs of the eigenvalues are of interest, Theorem 197
is sufficiently tested at only a finite number of points. Since there are several ways in whichw can be
composed, either of zero eigenvalues or of paired eigenvalues, Theorem 197 must be tested at every zero
crossings, and at one point between each zero crossings. Ifw > k+ ŵ at each one of these test points,
Theorem 197 is satisfied.
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6.3 Numerical determination of W

A useful way to obtainW matrices satisfying (6.11) is to find them numerically. An obvious but rather
expensive way of proceeding is to define the function

J(W) =
k

∑
j=1

‖W′MjW− M̂ j‖2
2 (6.17)

Any W that makes J=0 is clearly a solution to (6.11). Many other such functions are equally valid, but this
particular cost function is a fourth-order polynomial in the elements of W. Gradient methods can then be
employed to minimize J.

Alternatively, a Newton-Raphson method can be used that closely parallels the method used to find
io in § 5.4.1. This method finds a valid W without explicitly minimizing (6.17). Presently, this scheme will
be developed only for the case of radial magnetic bearings, but the generalization to any number of force
components is relatively straightforward.

Equation (6.11) describesk(k2 + 3k+ 2)/2 constraint equations on(k+ 1)n unknowns; almost al-
ways, the number of unknowns is more than the number of equations. If there were the same number of
unknowns and constraints, the usual Newton-Raphson method could be used. Here, the choice of the small-
est possible constraint satisfying step specifies a particular solution out of many possible step directions.

For the two dimensional case, the three columns inW will be represented as

W≡ [Wb|Wc1|Wc2] (6.18)

The columns ofW can then be stacked on top of one another to make one vector with 3n components. The
generalized bias linearization problem (6.11) can then be re-written as a series of quadratic forms in this
extended vector. DefineH as

H ≡




W′
bM1 0 0

W′
bM2 0 0
0 W′

c1M1 0
0 W′

c1M2 0
0 0 W′

c2M1

0 0 W′
c2M2

0 W′
c2M1 W′

c1M1

0 W′
c2M2 W′

c1M2

W′
c2M1 0 W′

bM1

W′
c1M2 W′

bM2 0
W′

c2M2 0 W′
bM2

W′
c1M1 W′

bM1 0




(6.19)

Then, (6.11) can be written as

H




Wb

Wc1

Wc2


 −




0
0
0
0
0
0
0
0
0
0
1
1




= 0 (6.20)
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or more succinctly as

F [w] = 0 wherew≡



Wb

Wc1

Wc2


 (6.21)

This set of equations is analogous to the set of equations (5.38) that a validio must satisfy. The Taylor
expansion ofH [w]w about some particular vectorwj is

H [w]w≈ H[wj ]wj +2H[wj ]δw+ . . . (6.22)

The smallest change inw necessary to solve (6.21) is then calculated by setting the first-order expansion of
H [w] equal toc and solving forδw using the Moore-Penrose pseudoinverse:

δw =−1
2
H ′[wj ]

(
H [wj ]H ′[wj ]

)−1
F[wj ] (6.23)

The next approximation fori is
wj+1 = wj + ∆δwj (6.24)

where∆ is a stepsize less than or equal to 1. This iteration will usually converge quickly with∆ = 1.
As noted in §5.4.1, this algorithm only converges to solutions for whichH H′ is of full rank.

However, valid solutions for the generalized bias linearization problem can exist whereH H′ is rank deficient.
This occurs if one row ofW is coincident with a zero eigenvalue of one of theM matrices. If this occurs,
several rows inH become identically equal to zero, andH H′ loses rank. In most cases where a solution
is sought numerically, there are no solutions for whichH H′ is rank deficient, and the algorithm works
well unmodified. The rank deficiency usually arises in situations where the actuator could be more properly
considered as a collection of smaller degree-of-freedom actuators rather than one higher degree-of-freedom
actuator. An example would be multiple sets of opposed horseshoes, each pair of which can be considered
an independent one-dimensional actuator. Even in this case, however, the algorithm can be modified so that
it will converge properly on solutions that have a singularH H′.

As the algorithm converges on a solution with a rank-deficientH at the solution,H H′ becomes in-
creasingly poorly conditioned with each step. However, the algorithm can converge quite close to a candidate
W that nearly satisfies (6.11) without H H′ becoming singular. WhenH H′ is judged to be effectively sin-
gular (that is, difference between the maximum and minimum singular values is greater than the computer’s
precision), the iterative scheme should proceed via minimizing (6.17) by a gradient descent rather than by
continuing with the modified Newton-Raphson scheme.

6.4 Analytical determination of W

In some special but practically important cases, manifolds of solutions forW can be obtained without the
need for a numerical search. Instances where this analytical scheme can be successfully used include sym-
metric radial magnetic bearings with an even number of legs but having arbitrary windings, and the magnetic
stereotaxis system.

Recall that any quadratic formed with an anti-symmetric matrixA is equal to zero:

i′Ai = 0 (6.25)

Proof: Since i′Ai is a scalar,i′Ai equals its own transpose:i′Ai = i′A′i. But sinceA is anti-
symmetric,i′Ai =−i′Ai. This can only be true for alli if iA′i = 0 for all i.

Therefore, it can be concluded that the quadratic formed from a symmetric matrixM and any anti-symmetric
matrixA is equal to the quadratic formed fromM alone:

i′(M +A)i = i′Mi + i′Ai = i′Mi (6.26)
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However,(M + A) can have very different properties fromM. In particular, anA might be chosen
such that(M +A) has a lower rank thanM. For example, consider:

M =
[

1 0
0 −1

]
A =

[
0 −1
1 0

]

In this case,M is clearly of rank 2. However

M +A=
[

1 −1
1 −1

]

The columns of(M +A) are clearly linearly dependent; the rank has been reduced from 2 to 1.
If an anti-symmetric matrix is found that produces a reduced rank(M + A), the (M + A) can be

broken down into 2 components, each of which has less thanN rows. Continuing with the previous example,

M +A=
[

1 −1
1 −1

]
=
[

1
1

]
[1 −1]

To denote this decomposition in the general case, the notation

(M +A) = B′D (6.27)

will be used.
The existence of this decomposition is crucial to the analytical determination of bias linearization

currents. Using this decomposition, the quadratic force relations can be decomposed into a linear system of
equations with the quadratic nature of the problem encapsulated in an arbitrarily chosen vector that enters in
on both sides of the otherwise linear equation. For the example problem,

f = { i1 i2}
[

1
1

]
[1 −1]

{
i1
i2

}

can be re-written as the linear system of equations[
1 1
q −q

]{
i1
i2

}
=
{

q
f

}

whereq is an arbitrarily chosen number. The left-hand side of the equation can then be inverted to yield:{
i1
i2

}
=

1
2

[
1 1

q

1 − 1
q

]{
q
f

}

A manifold of solutions indexed byq has resulted. By choosingq to be any particular constant, a linear rule
for currents that realize any force results. By comparing to (6.12), theW matrix associated with this solution
is

W =
1
2

[
q 1

q

q − 1
q

]

This result is just the same as (6.8), examined earlier in the chapter. The arbitrary constantq simply indexes
all possible bias current levels.

The same sort of decomposition used in the one degree-of-freedom case can be used to determine a
manifold of solutions for more complicated problems. Consider a higher degree of freedom actuator charac-
terized by(M1, . . . ,Mk). Assume that anti-symmetric matrices(A1, . . . ,Ak) can be chosen such that

M1 +A1 = B′D1
...

Mk +Ak = B′Dk

(6.28)
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The current-to-force relationship could then be re-written as




B
q′D1

...
q′Dk


 i =




q
f1
...
fk


 (6.29)

whereq is now an arbitrary vector rather than an arbitrary scalar. If the simultaneous rank reduction of
each matrix is ofk or greater dimension, the left-hand side of (6.29) can be inverted for anyq for which the
left-hand side is non-singular:

i = G[q]′(G[q]G[q]′)−1




q
f1
...
fk


 where G[q] =




B
q′D1

...
q′Dk


 (6.30)

Equation (6.30) is a family of linear inverses to the current to force relations indexed by the choice ofq.
The question then becomes: “when and how can a set of anti-symmetricA matrices be chosen that

yields the decomposition in (6.28)?” The ability to realize (6.28) is intimately related to the existence of ak
or greater dimensional totally isotropic space common to allM characterizing a given actuator.

Theorem 6.2 A set of current to force realtions characterized by M1, . . . ,Mk can be decomposed into the
linear form

G[q]i =




q
f1
...
fk




in whichG[q] has less than ore equal to n rows if and only if there exits a k or greater dimensional subspace
of currents i spanned by the rows of a matrix P that satisfies

P′M1P = 0
...

P′MkP = 0

Necessary:Assume that (6.29) can be realized. MatrixB is then a rectangular matrix withl rows
and l ≤ n− k. Let P be ann× (n− l) matrix whose columns are perpendicular to the rows ofB. Such a
matrix can always be constructed via Gramm-Schmidt orthogonalization [HJ85]. SinceP′B always yields a
zero result, everyP′MjP = 1

2(P′BDP+P′DB′P) = 0.
Sufficient:Let anti-symmetric matrixAj be

Aj =−P(P′P)−1P′Mj +MjP(P′P)−TP′ (6.31)

Then,
P′(Mj +Aj) = P′Mj −P′P(P′P)−1P′Mj +P′MjP(P′P)−TP′ = 0 (6.32)

Now, define the matrix
G≡ [M1 +A1| · · · |Mk +Ak] (6.33)

Note thatP′G = 0 due to the choice ofA’s. Let the singular value decomposition ofG be denoted

G = U ′ΛV (6.34)
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where the entries in each matrix associated with zero singular values have been omitted. Since theP′G = 0,
U will have at mostn− rank(P) rows. It can then be noted that defining

B≡U (6.35)

and partitioning
[D1| · · · |Dk]≡ ΛV (6.36)

yields the desired form (6.29).

Corollary 6.1 A solution to the generalized bias linearization problem exists only if the current-to-force
relations can be put in the form of (6.29).

Proof: If a solution to the bias linearization problem exists, the lastk columns ofW are the basis for
a k dimensional totally isotropic space common to allM’s. These lastk columns can be used as the matrixP
described in Theorem6.2; (6.29) can then be constructed via the “sufficient” part of this theorem.

Basically, if an isotropic space of dimensionk or greater is known, a family of solutions to the bias
linearization problem can be found merely by the inversion of a small matrix. For the case of radial magnetic
bearings, to be discussed in detail in later chapters, high-dimensional totally isotropic spaces can be obtained
by inspection. For the case of the magnetic stereotaxis system, the derivation of the force-current relationship
serendipitiously leads directly to the decomposed form (6.29) (see §4.2).

However, formulating the problem in the form of (6.29) has advantages even when a totally isotropic
space is not knowna priori. Even though a totally isotropic space must be found by a numerical search in
this case, the result is a family of solutions rather than just the single solution obtained by directly solving
(6.11) numerically.

To obtain a common totally isotropic space by a numerical search, it must first be noted that an
orthonormal basis,P, for such a space must satisfy:

P′M1P = 0
...

P′MkP = 0
P′P = I

(6.37)

whereI denotes the identity matrix. MatrixP must have at leastk columns, but higher dimensional spaces can
be sought by adding more columns toP. An initial guess forP is chosen randomly, andP can be determined
by exactly the same modified Newton-Raphson iteration described in §6.3.

In general, if there is one solution to the generalized bias linearization problem, many other solutions
also exist. Choosing the “best” set of linearization currents is a highly implementation-specific question and
is therefore addressed in subsequent chapters.



Chapter 7

Inverse Solution – Direct Optimization

In the previous chapter, the criterion for a desirable inverse was that the inverse should be easy to implement,
vis. a linear relationship between the desired forces and the required currents. However, requiring a linear
relationship between desired force and currents is overly restrictive; an actuator need not have a linear inverse
for all desired forces to be realizable. In addition, bias linearization does not necessarily yield an inverse with
optimal performance in terms of maximizing bearing load capacity or minimizing resistive power losses.

An alternate philosophy for choosing a particular inverse is to select the solution that optimizes some
measure of performance while also realizing the desired forces. For the inverse to be physically realizable, it
should also have the following properties [Gre96]:

• All currents must go to a nominal bias value when the force requested is zero.This requirement avoids
the slew rate limiting problem at low force levels if the bias currents are appropriately selected (see
AppendixB).

• Coil currents should be a continuous function of force.This requirement avoids jumps in required
currents that would cause slew rate limiting problems away fromf = 0.

• The algorithm[should be]computationally quick and simple.For a magnetic actuator to have adequate
bandwidth, the throughput rate must be fast. The time spent solving the magnetic inverse problem
should therefore not take up a large portion of the sampling interval in a digital controller implemen-
tation. An inverse computed off-line and stored in a look-up table for real-time used is assumed to be
adequate.

7.1 Formulation of the generalized direct optimization problem

A natural candidate for a cost function to optimize isi′Qi whereQ is a positive definite matrix used for
weighting the currents relative to one another. Minimizing this cost would give, in a sense, the smallest
current necessary to realize a given force. Another interpretation is that this cost function minimizes the
resistive power losses necessary to produce a given force. Using this quadratic cost function, the formal
definition of the generalized direct optimization problem is:

min
i

J(i)≡ i′Qi (7.1)

subject to i′M1i = f1
...

i′Mki = fk
However, this formulation has an immediately apparent problem. At zero force,i = 0 satisfies the

constraints while at the same time producingJ = 0. SinceQ is positive definite, zero is the lowest possible

39
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value ofJ; i = 0 is clearly the optimal solution atf = 0. The requirement of a non-zero current at zero force,
necessary to avoid slew rate limiting, has been violated.

Consider instead the cost function

min
i

J(i)≡ (i− io)′Q(i− io) (7.2)

subject to i′M1i = f1
...

i′Mki = fk

whereio satisfies the same conditions outlined in §5.4:

i′oMj io = 0 ∀ j = 1, . . . ,k

and the matrixH[io] is of rankk where

H[io]≡




i′oM1
...

i′oMk




As shown previously by Theorem5.2, it is possible to control an actuator with finite current slew rate if and
only if such a vector exists. For this cost function,f = 0 andJ = 0 at i = io; current vectorio therefore must
be the optimal solution ofi at f = 0. Away from f = 0, io becomes increasingly insignificant in comparison
to i. As i gets larger,

(i− io)′Q(i− io)≈ i′Qi (7.3)

The modified cost converges to the power-optimal cost for largei.
The problem defined by (7.2) may be adequate if there is a way of solving (7.2) that yields a smooth

inverse mapping. Perhaps the best way to produce an inverse mapping in this case is through a continuation
(or homotopy) approach. The optimal solution is known atf = 0. The idea is then to make small changes to
i that produce a non-zero force but still are optimal in the sense of (7.2). Similar techniques have been used
in the literature, particularly in the area of optimal power system studies [aAFVJ85].

The first step in developing this approach is to combine the desired force constraints into the cost
function via scaling by Lagrange multipliers, denoted byλ [Fox71]:

Ĵ≡ (i− io)′Q(i− io)+ λ′(H[i]i− f j) (7.4)

The Lagrange multipliers can be thought of heuristically as representing a relative cost of satisfying the
constraints. For an optimum, the partial derivatives ofĴ with respect to bothi andλ must be equal to zero:

2Q(i− io)+2H ′[i]i = 0
H[i]i− f = 0

(7.5)

Equation (7.5) is known as the “Kuhn-Tucker optimality conditions.”
If a small change in force is desired,i should change in such a way that the change in force is

realized while still satisfying the optimality conditions. Lets denote the distance along an arbitrarily chosen
continuous trajectory originating atf = 0 in the space of desired forces, as illustrated in Figure7.1. A small
change in forces can be represented now byd f/ds.

For the optimality conditions to be satisfied for a givend f/ds, the total derivative of (7.5) with
respect tosmust be zero:

2

[
Q+ ∑k

j=1λ jM j H ′[i]
H[i] 0

]{ di
ds
dλ
ds

}
=
{

0
d f
ds

}
(7.6)

Equation (7.6) is a system of ordinary differential equations ins. On the right hand side,d f/ds is
specified by the choice of path through thek-dimensional space off . The left-hand side can then be inverted
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Figure 7.1: 2-d example of a trajectory out off = 0

at any particulari andλ to yield the change in currents and Lagrange multipliers that correspond to any
d f/ds. An exposition by Bryson and Ho [BH69] indicates that this integration yields the samei andλ for a
given f regardless of path as long as the left-hand side of (7.6) is always non-singular and the initial condition
is itself a minimum.

Initial conditions must be supplied so that (7.6) can be integrated. The initial condition on current is
i = io at f = 0, sinceio is the optimal solution to (7.2) at zero force. However, the Lagrange multipliers,λ,
are also functions ofs, and an appropriate condition onλ must also be supplied atf = 0. The value ofλ can
be determined by considering the Kuhn-Tucker conditions (7.5) at the f = 0 point. Substitutingf = 0 and
i = io into (7.5) yields

2H ′[io]λ = 0
0 = 0

(7.7)

The constraint equations in (7.5) are satisfied atf = 0 by definition ofio. Recall that another condition onio
is thatH[io] must be of rankk. An equivalent condition is that the columns ofH ′[io] are linearly independent.
Since the columns ofH ′[io] must be linearly independent, no non-zero combination of columns can add up
to zero; onlyλ = 0 will satisfy (7.7). The correct initial condition onλ is thereforeλ = 0 at f = 0 so that the
manifold tracked out of the zero force solution is an optimum. If some other initial condition is used forλ,
a manifold will result that satisfies, the constraint equations; however, a manifold produced byλ[0] 6= 0 will
not be optimal in the sense of (7.2).

An optimal inverse mapping is created by integrating (7.6) numerically along many different paths
heading out of the origin, usingi = io, λ = 0 as the initial condition atf = 0. For example, in a 2-force
actuator,f can be parameterized in terms ofsand an angleθ as

f1 = scosθ
f2 = ssinθ (7.8)

The path is chosen so that the choice ofθ corresponds to the direction of the force, ands corresponds to the
magnitude of the force along that direction. To create an inverse mapping, (7.6) would be integrated from
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s= 0 to some desired maximum force at a great enough number ofθ’s so that the inverse is suitably defined
in the range of forces of interest.

This method relies on the fact that the inverse has a finite slope with respect tos to compute the
inverse; therefore, any inverse obtained by this method will have the desired property of smoothness along
each integration path. Unfortunately, it is not clear that the left hand side of (7.6) will always be non-singular
for every possible set ofM’s and io’s. However, as shown in examples in Chapter9, this method can give
smooth inverse mappings in the practically important case of 8-pole radial magnetic bearings.

7.2 1 degree of freedom example

As an example of the method, consider the 1 d.o.f. problem

f = { i1 i2}
[

1 0
0 −1

]{
i1
i2

}
(7.9)

For this example, one can choose

io =
{

1
1

}
(7.10)

as a biasing vector. The cost function to be optimized is given by (7.4):

Ĵ = (i1−c)2 +(i2−c)2 + λ(i21− i22− f ) (7.11)

wherec is a constant that scales the magnitude of the vector. Taking derivatives with respect toi1, i2 andλ
yields the optimality conditions:

2(i1−c)+2λi1 = 0

2(i2−c)−2λi2 = 0 (7.12)

i21− i22− f = 0 (7.13)

Define f to be linear withs:
f [s] = s (7.14)

Now, taking the total derivative of the optimality conditions with respect tosyields:

2


(1+ λ) 0 i1

0 (1−λ) −i2
i1 −i2 0






di1
ds
di2
ds
dλ
ds


=




0
0
1


 (7.15)

This system of ordinary differential equations is then integrated numerically, usingi1 = i2 = c;λ = 0 as the
initial condition ats= 0.

The resulting currents fori1 are shown in Figure7.2. The requiredi2 is the same plot reflected about
f = 0. Several different magnitudes ofc are considered:c = 0.5,0.375,0.25,0.125,0.05. Asc goes to zero,
the solution converges toi1 =

√
f for f ≥ 0 andi1 = 0 for f < 0 – the solution from (1.9) based solely on

power losses. As the magnitude ofio increases, the high slopes aroundf = 0 are smoothed out, yielding
solutions that require greater current but are physically realizable.

7.2.1 Similarity between solutions for different magnitudes ofio
If (7.6) is solved for oneio, the solution for all other scalings of the sameio can be inferred by rescaling.
Consider the class of problems

min
i

J(i)≡ (i−c io)′Q(i−c io) (7.16)
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Figure 7.2: Solution for 1-d example at different bias magnitudes.

subject to i′M1i = f1
...

i′Mki = fk

Definecz= i and substitute to obtain

min
i

J(i)≡ c2(z− io)′Q(z− io) (7.17)

subject to z′M1z= f1/c2

...
z′Mkz= fk/c2

By inspection of (7.17), one can conclude thati[c io, f ] = c i[io, f/c2]. Note, however, that this similarity
applies only to actuators that have a linear B-H relationship. If the B-H curve is nonlinear, the current-to-
force relations cannot be reduced to the simplef = i′M i that allows for the similarity.



Chapter 8

Bias Linearization–Magnetic Bearings

In Chapter6, a general representation of the bias linearization problem and several methods of obtaining
solutions were presented without any reference to a specific application. The present chapter will address the
application of these tools to the specific problem of magnetic bearings. First, the application of the analytical
solution method to symmetric magnetic bearings with an even number of poles is considered. It is shown
that all possible configurations of up ton−1 failed coils for a symmetric bearing with 2n coils andn > 1 can
be decomposed into a linear problem of the form of (6.29). Since there are typically manyW matrices that
satisfy the generalized bias linearization problem (6.11), a criterion is then presented by which a bestW can
be selected.

8.1 Analytical solution for symmetric bearings

In § 6.4, an analytical method was presented for solving for a linear inverse given the existence of a matrix
P that spans a totally isotropic space common to allM matrices. In the general case, finding a validP
necessary for this method is as difficult as solving for a validW via the methods addressed in §6.3. However,
for symmetric radial magnetic bearings with an even number of poles, many different candidates forP are
available by inspection.

Consider first the symmetric radial case in which each pole is wound with an independent coil and
the reluctances of iron sections of the flux path are assumed to be zero. Columns ofP can be formed in at
least three ways:

1. The first way is by specifying currents of equal magnitude but different sign in two coils that are 180o

apart. This case is illustrated in Figure8.1. In this picture, there are currents of opposite sign but equal
magnitude in coils 1 and 5. The result is that the only flux crossing from the stator onto the rotor goes
through poles 1 and 5. Since the poles are located opposite to one another, the magnetic stress on the
rotor integrates to zero. The column inP corresponding to this case is




−1
0
0
0
1
0
0
0




2. The second way is to have equal currents in one set of opposed coils and equal currents of different

44
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1

5

Figure 8.1: Flux resulting from opposite currents in opposed coils.

sign in another set of opposed coils, yielding a column ofP of the form:




0
1
0
−1
0
1
0
−1




Again, the choice of current is such that flux only flows across the air gaps associated with coils that
are turned on. This situation is illustrated in Figure8.2.

3. Lastly, the vector{1, . . . ,1}T produces no flux across any gap due to conservation of flux constraints.

A high-dimensional isotropic space can be formed by including each coil in an isotropic space formed by
either case 1 or case 2, and including the vector from case 3.

For example, in the 8-pole case, some validP matrices would be

P =




1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
−1 0 0 0 1
0 −1 0 0 1
0 0 −1 0 1
0 0 0 −1 1




(8.1)
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Figure 8.2: Flux resulting from two sets of opposed coils.

P =




1 0 0 1
0 1 0 1
0 −1 0 1
0 0 1 1
−1 0 0 1
0 1 0 1
0 −1 0 1
0 0 −1 1




(8.2)

P =




1 0 1
0 1 1
−1 0 1
0 −1 1
1 0 1
0 1 1
−1 0 1
0 −1 1




(8.3)

Note that different ways of “using” the poles result in totally isotropic spaces of different dimensions. The
highest-dimension isotropic space can be achieved using the scheme in (8.1), yielding ann/2+1 dimensional
totally isotropic space for ann pole bearing. Although a large number of different isotropic spaces can be
formed by the above method, it is also possible that there may be other totally isotropic spaces that do not
rely on the symmetries in case 1 and case 2; however, the above method yields a broad range of solutions.
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Figure 8.3: 4 pole symmetric radial bearing.

8.1.1 Fault tolerance

Once a particularP is chosen, the quadratic current-to-force relations can be decomposed into the linear form
of (6.29):




B
q′D1

...
q′Dk


 i =




q
f1
...
fk


 (6.29)

using (6.34)-(6.36). The resulting form (6.29) is a set of at most(2+n− rank[P]) equations forn unknowns.
If rank[P] > 2, this system of equations is underdetermined, implying a potential for fault tolerance. If a coil
fails, extra constraints can simply be added to this set of equation enforcing zero current in the failed coils.
For the biggest dimensionP matrix, P is of rankn/2+ 1, implying that extra constraints can be added to
account for the failure of up ton/2−1 coils.

As a demonstration of the capacity for fault tolerance, consider the symmetric four-pole bearing
pictured in Figure8.3. Each pole has an area ofa, a nominal gap ofgo, and a coil ofn turns. For this actuator,

Mx = c




0.25 −0.125 0 −0.125
−0.125 0 0.125 0

0 0.125 −0.25 0.125
−0.125 0 0.125 0




My = c




0 −0.125 0 0.125
−0.125 0.25 −0.125 0

0 −0.125 0 0.125
0.125 0 0.125 −0.25



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where c is a constant containing the bearing geometry:

c =
an2µo

g2
o

One could select aP of the form:

P =




1 0 1
0 1 1
−1 0 1
0 −1 1




which would yield the corresponding anti-symmetric matrices via (6.32):

Ax = c




0. 0.125 −0.25 0.125
−0.125 0. 0.125 0.

0.25 −0.125 0. −0.125
−0.125 0. 0.125 0.




Ay = c




0. −0.125 0. 0.125
0.125 0. 0.125 −0.25

0. −0.125 0. 0.125
−0.125 0.25 −0.125 0.




The matrixG≡ [Mx +Ax|My +Ay] is then

G = c




0.25 0. −0.25 0. 0. −0.25 0. 0.25
−0.25 0. 0.25 0. 0. 0.25 0. −0.25
0.25 0. −0.25 0. 0. −0.25 0. 0.25
−0.25 0. 0.25 0. 0. 0.25 0. −0.25




A singular value decomposition ofG yields

B = [0.5 −0.5 0.5 −0.5]

Dx = c[0.5 0. −0.5 0. ]
Dy = c[0. −0.5 0. 0.5]

The linear equation analogous to (6.29) is then
 0.5 −0.5 0.5 −0.5

0.5qc 0. −0.5qc 0.
0. −0.5qc 0. 0.5qc


 i =




q
fx
fy


 (8.4)

whereq can be chosen as any number that makes the left-hand side of full rank. Eq. (8.4) specifies three
equations for four unknowns, leaving open the possibility of one coil failure. If, for example, the coil on pole
1 were to fail, the additional constraint

[1 0 0 0] i = 0

could also be included in (8.4). The solution is found by inverting the left-hand side of (8.4) augmented by
the additional constraint:

i =




0 0 0 1
−1 −1

cq
−1
cq 1

0 −2
cq 0 1

−1 −1
cq

1
cq 1






q
fx
fy
0




TheW matrix corresponding to this example is

W =




0 0 0
−q −1

cq
−1
cq

0 −2
cq 0

−q −1
cq

1
cq



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8.2 Numerical determination of linearizing currents in fault configu-
rations

The task of finding linearizing currents for a fault configuration can also be approached on a numerical basis.
Using the matrixK introduced in (3.18), the reduced order current vector can be mapped onto the full current
vector. In this case, the generalized bias linearization problem is

K ′MxK = M̂x

K ′MyK = M̂y
(8.5)

for radial magnetic bearings. This problem is then solved using the numerical method presented in §6.3.

8.3 Asymmetric bearings

In the case of asymmetric bearings, there may still be linearizing solutions, even though the isotropic spaces
that lead to these solutions are not at all obvious. An example is the asymmetric bearing considered in §3.1.
The bearing will be linearized if there can be found a 5×3 matrix W such that (6.11) is satisfied:

W′MxW =


 0 1

2 0
1
2 0 0
0 0 0


 = M̂x (8.6)

W′MyW =


 0 0 1

2
0 0 0
1
2 0 0


 = M̂y (8.7)

A suitable linearizing set of currents is then obtainable through the numerical search described in
§ 6.3. For example,

W =




0.136293 −0.314259 0.610881
0.205067 −0.0433335 0.233348
0.461968 −0.409403 0.67415
0.697068 0.261145 −0.475498
−0.0278216 0.227161 −0.158715


 (8.8)

is one linearizing solution satisfying (8.6) and (8.7). The first column of (8.8) is the biasing current vector.
The second and third columns represent theX− andY− direction control vectors respectively. The physical
coil currents are then specified by (6.12).

i1 = 0.6041̂io −0.1210fx/îo +0.2996fy/îo
i2 = 0.1497̂io +0.2909fx/îo −0.5332fy/îo
i3 = −0.0329̂io +0.0517fx/îo −0.2347fy/îo
i4 = −0.2572̂io +0.4607fx/îo −0.7501fy/îo
i5 = −0.5526̂io −0.1636fx/îo +0.3445fy/îo
i6 = 0.0266̂io −0.2170fx/îo +0.1516fy/îo

(8.9)

8.4 Criterion for Optimal W

In general, the problem defined by (6.11) has many solutions. Therefore, a criterion must be established for
selecting the best solution. While many possible quality measures can be devised, possibly the most useful
is the maximum load which the bearing can generate before magnetic saturation occurs at some point in the
actuator. Again, radial magnetic bearings will be considered in particular. It is, however, straightforward to
formulate the same type of cost function for more elaborate Maxwell force actuators.
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To determine when saturation occurs in the stator, the flux densities in the legs, back-iron, and
journal iron (denotedbp, bb, andbj respectively) must all be computed. If the pole areas are equal to the air
gap areas, then the pole flux densities are simply equal to the gap densities:

bp = b (8.10)

Most of the back iron flux densities can be found from then−1 independent conservation of flux conditions:

ab, jbb, j −ap, jbp, j −ab, j+1bb, j+1 = 0 (8.11)

The one remaining equation required is most properly obtained by applying Ampere’s loop law to the back
iron:

n

∑
j=1

bb, j l j = 0 (8.12)

wherel j is the length of thejth section. However, as the circuit begins to saturate, the permeabilities of
the back iron sections with higher flux density will begin to decrease. This will produce a redistribution of
flux density which tends to minimize the peak flux density in the back iron, subject to conservation of flux.
(Of course, as the iron starts to saturate, flux leakage will also increase, reducing the validity of the simple
conservation of flux conditions used here.) On the basis of this heuristic argument, it may be best to solve
these equations in such a manner as to minimize the peak flux density. The simplest approximation to this
kind of solution is provided by the Moore-Penrose pseudoinverse. Summarize (8.11) as

Vbbb = Vpbp (8.13)

Using the Moore-Penrose pseudoinverse results in

bb = V†
b Vpbp , V†

b
.= VT

b (VbV
T
b )−1 (8.14)

The journal flux densities can be computed in a similar manner, leading to

bs =




bp

bb

bj


=


 I

V†
b Vp

V†
j Vp


b =


 I

V†
b Vp

V†
j Vp


Vi (8.15)

The transformation from the reduced order current vector to the distribution of flux densities throughout the
stator can then be defined as:

Vs
.=


 I

V†
b Vp

V†
j Vp


V (8.16)

Now consider the particular case of a 2 degree of freedom radial bearing. Rather than computing
the saturation load directly, compute the flux density distribution for a force of magnitude 1.0 and arbitrary
orientationΘ:

fx = cosΘ fy = sinΘ (8.17)

If the parameterŝio, îx, andîy are chosen according to

îo = ζ , îx =
cosΘ

ζ
, îy =

sinΘ
ζ

(8.18)

then the desired force of magnitude 1.0 and directionΘ will result. The flux distribution throughout the stator
resulting from any selection ofζ andΘ is given by

bs[ζ,Θ,W] = Vsi = VsW




ζ
cosΘ/ζ
sinΘ/ζ


 (8.19)
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The maximum magnitude of the resulting flux density distribution is

bmax[ζ,Θ,W] = |bs[ζ,Θ,W]|∞ (8.20)

The achievable load capacity is then

fmax[ζ,Θ,W] =
(

bsat

bmax[ζ,Θ,W]

)2

(8.21)

wherebsat is the saturation flux density of the magnet iron.
The achievable load capacity is dependent upon the choice ofζ andΘ. Typically, it is conservative

to base the load capacity upon the worst case orientation:

bmax[ζ,W] = max
Θ
|bs[ζ,Θ,W]|∞ (8.22)

This choice might be modified for systems where a gravity load or some other load with fixed orientation is
significant. Further, the choice ofζ is essentially free: it is the square root of the ratio between biasing field
and control field and has no effect on the magnitude or orientation of the field generated. This parameter
should be chosen in such a manner as to minimize the peak flux density (and thereby maximize the load
capacity):

bmax[W] = min
ζ

max
Θ
|bs[ζ,Θ,W]|∞ (8.23)

In this manner, the best solutionW∗ is that which minimizesbmax (or maximizesfmax):

bmax = min
W→W∗min

ζ
max

Θ
|bs[ζ,Θ,W]|∞ (8.24)

The minimax problem defined by (8.24) along with the constraint equation (6.11) forms a nonlinear
optimization problem for selecting W. However, it is unlikely that a single gradient descent optimization will
yield a global optimum because the solutions for W are not necessarily connected. For symmetric radial
bearings with an even number of poles, manifolds of solutions can be obtained analytically. The task is
then to find the particular manifold and arbitrary vectorq that gives the best performance relative to (8.24).
A globally optimal solution is still not guaranteed, because it is possible that the bestq found on the best
manifold found is only locally optimal, or that the global optimum might lie on an unconsidered manifold.

8.5 Optimization of W on the basis of maximized load capacity

The criterion for an optimalW presented in §8.4 can be combined with the method presented in §6.3 for
obtaining feasible solutions to yield a locally optimal solution. The simplest way to proceed is to repetitively
apply the procedure in §6.3starting from different randomly generated seeds to obtain many feasible solu-
tions for the bias linearization problem in question. Then, on the basis of (8.24), the W is picked that delivers
the best bearing load capacity.

An alternative procedure that tends to yield better solutions is to use the modified Newton-Raphson
method to first yield a feasible solution, denotedwo. It can then be supposed that there is a manifold of
solutions connected to the feasible solution. The idea is to then move along this manifold of solutions in
a direction that improves the quality of the solution. Movement should proceed along this manifold until
further moves do not improve the quality ofW. This procedure is known as thereduced gradient method,
and was first developed in [AC69].

Recall that the conditions thatW must satisfy can be written as

F [w] = 0 wherew≡



Wb

Wc1

Wc2


 (6.21)
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The first-order Taylor expansion ofF about aW that satisfies (6.21) is then

F [w]≈ 2H [wo]δw+ . . . (8.25)

If a small change away fromwo, denoted byδw, is made that is orthogonal to each row inH [w], the change
in F [w] will be very close to zero.

Using Gramm-Schmidt orthogonalization, one can create a matrixHo[W] whose rows are orthonor-
mal and orthogonal to the rows ofH [w]. In a region local to feasible solutionwo, the manifold of solutions
can be approximated by

w = wo +Hoν (8.26)

whereν is a set of coordinates that parameterizes the local solution manifold. The task is to find a direction
in the space parameterized byν that gives the best improvement inbmax.

Since thebmax[w] cannot be differentiated analytically, and since the gradient ofbmax[w] with respect
to w may be discontinuous, the best way to find a direction that improvesbmax[w] is approximating the
gradient,∂bmax/∂ν by two-point numerical derivatives. This approximation may not yield thebestsearch
direction, but it should yield a direction that improvesbmax[w]. Once an approximate∂bmax/∂ν is computed,
a neww, denotedw1 is created by a step along the gradient direction:

w1 = wo−c
∂bmax

∂ν
(8.27)

wherec is a small number controlling the length of the step. Typically,c should be chosen such that the
length ofc∂bmax

∂ν is small compared to the length ofwo (< 1%).
Vectorw1, may not, however, satisfyF [w1] = 0. Therefore,w1 should be used as the starting point

of a new modified Newton-Raphson search. Typically, only one or two Newton-Raphson steps are necessary
to bringw back onto the solution manifold. The entire process is repeated until additional steps along the
solution manifold bring no improvement (or only trivial improvements) inbmax.

The above procedure has been used successfully to find locally optimal solutions for each failure
configuration for an 8-pole radial magnetic bearing for up to 3 coils failed. These solutions are detailed in
AppendixA. A program that implements the reduced gradient search is included as AppendixA.2.

8.6 Modification of W with change in position

Up to this point, the position of the rotor has been assumed constant. If the rotor is allowed to change position,
the force-to-current relationships vary as well, as described in §3.3. Fortunately, if a set of linearizing currents
is known for the centered position, it is relatively easy to compute position-dependent corrections to these
currents via a continuation strategy. Consider the radial magnetic bearing for which aW matrix has been
chosen that satisfies (8.6) and (8.7):

W′Mx[x,y]W− M̂x = 0
W′My[x,y]W− M̂y = 0

Assume that a matrixW[0,0] has been chosen so that these equations are satisfied atx = y = 0. The change
in these equations with respect to position should then be equal to zero ifW[x,y] is correctly chosen:

∂W
∂x

′
MxW+W′Mx

∂W
∂x

+W′ ∂Mx

∂x
W = 0 (8.28)

∂W
∂x

′
MyW+W′My

∂W
∂x

+W′ ∂My

∂x
W = 0 (8.29)

These equations represent 12 linear conditions that∂W/∂x must obey so that the bias linearizing conditions
are still satisfied. For small displacements, it is sufficient to linearizeW aboutx = y = 0. In this case, the
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current as a function of position as well as force is approximated as

(
W+x

∂W
∂x

+y
∂W
∂y

)


îo
f1/îo
f2/îo


 (8.30)

To find ∂W
∂x and ∂W

∂y , (8.28) and (8.29) should be solved using a Moore-Penrose pseudoinverse to yield the
smallest possible changes inW that still satisfy the generalized bias linearization conditions.



Chapter 9

Direct Optimization–Magnetic Bearings

Consider a brief re-examination of the motivation behind the direct optimal method for magnetic bearings.
For generality, an 8-pole bearing withN turns wound on each leg and adjacent coils connected in a series
configuration can be represented non-dimensionally using

b =
b

bsat
(9.1)

i =
(

µoN
gobsat

)
i (9.2)

f =
(

µo

cos(π/8)ab2
sat

)
f (9.3)

For each force direction

f = i ′
[

1 0
0 −1

]
i (9.4)

With this particular non-dimensionalization, ani of 1 induces the saturation flux density in the legs. The
highest load is then attained byi1 = 1 andi2 = 0, yielding a non-dimensional force off = 1. To realize this

maximum load with a bias linearization scheme, the bearing is biased at1
2 the saturation flux density:

i1 =
1
2

+
1
2

f (9.5)

i2 =
1
2
− 1

2
f

Although this bias flux level is necessary to get the maximum load, it may exceed the minimum bias necessary
to avoid slew rate limiting. Either load capacity or efficiency (in the sense of resistive power losses) must be
sacrificed.

The aim of the direct optimal method is to simultaneously achieve both aims by realizingf = 0 with
the smallest possible currents that satisfy slew rate constraints and by minimizing the currents required at
high forces to achieve acceptable load capacity. For the simple 1-d case, Figure 299 compares the currents
required for bias linearization to the solution for ai = 0.25 bias level from §7.2. Substantially lower current
levels occur around zero force, and the maximum force of 1 is realized with a current very close to the optimal
value of 1. The savings are more apparent in Figure9.2, a plot of power loss for each scheme. Although both
schemes perform about equally well at high force levels, the direct optimization result is much better at the
low force levels, with only one quarter of the power required of the bias linearization scheme at zero force.

54
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Figure 9.1: Comparison of bias linearization and direct optimal method in a 1-d.o.f. actuator.

9.1 Choice of io
The bias vector,io, is necessary to avoid slew rate limiting near zero force. In a 1-d.o.f. actuator, choice
of a bias vector is relatively obvious. For more general actuators, there are many possible candidates forio.
Some criterion must be defined by which a particulario can be chosen. One way of rating the efficacy of a
particulario might then be on the basis of the worst slew rate required to move away from thef = 0 point.
At f = 0, the slew rate for the worst direction is easy to compute. At this point, Lagrange multipliers,λ, are
equal to zero, makingλ disappear from the left-hand side of (7.6). The solution fordi

dt is then given through
the Moore-Penrose pseudoinverse:

di
dt

= Q−1H ′(HQ−1H ′)−1 d f
dt

(9.6)

For the worst possible direction,∥∥∥∥di
dt

∥∥∥∥
2
= σ̄[Q−1H ′(HQ−1H ′)−1]

∥∥∥∥d f
dt

∥∥∥∥
2

(9.7)

The most desirableio would give the smallest possibledi/dt per unit length ofio:

min
io

σ̄[Q−1H ′(HQ−1H ′)−1] (9.8)

subject to i′oio = 1

For the case whereQ = I , (304) reduces to

min
io

1
σ[H]

(9.9)

subject to i′oio = 1
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Figure 9.2: Power loss for bias linearization and direct optimization in a 1-d.o.f. actuator.

Once a particular direction forio is chosen on the basis of (304), a magnitude must be selected that yields a
high enough maximum slew rate atf = 0. From AppendixB, a sufficient condition for realizable slew rate is∥∥∥∥di

dt

∥∥∥∥
2
≤ vo

σ̄[L]
(B.4)

The maximum force slew rate,|d f/dt|max should be a design specification of the actuator based on the
maximum force that the actuator is desired to produce at each frequency. Combining (B.4) and (303) gives,
for realizability

vo

σ̄[L]
≥ |d f/dt|max

cσ[H]
(9.10)

wherec is the magnitude associated with a unit vectorio, H ≡ H[io] andQ is assumed to be the identity
matrix. Solving forc,

c≥ |d f/dt|maxσ̄[L]
vo σ[H]

(9.11)

9.2 Symmetric 8-pole bearing

Of practical interest is the performance of the direct optimal solution on an 8-pole symmetric bearing. The
non-dimensionalization for a general 8-pole bearing and the matrices characterizing the arrangement are
detailed in AppendixA. For comparison with bias linearization, the direct optimization solution can be
contrasted with the all-coils-active bias linearization presented in §A.1.1.

The two obvious candidates forio are of the form{1,−1,1,−1,1,−1,1,−1}T and
{1,1,−1,−1,1,1,−1,−1}T which correspond to the NSNS and NNSS biasing schemes typically used in 8-
pole bearings. Of these two options, the NSNS scheme has been observed to yield consistently lower power
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Figure 9.3: Coil 1 in an 8-pole bearing

losses and maximum flux densities in the stator when used asio; therefore, the NSNS will be exclusively
considered here.

For the 8-pole bearing, the optimization problem to be solved is

min
i

J(i)≡ (i− io)′Q(i− io) (7.2)

subject to i′M1i = f1
...

i′Mki = fk
where io = c{1,−1,1,−1,1,−1,1,−1}T

The particular scalingc = 0.25 is about half of the bias level used by the 8-pole bias linearization in §A.1.1.
This optimization leads to the set of ordinary differential equations

2

[
Q+ ∑k

j=1 λ jM j H ′[i]
H[i] 0

]{ di
ds
dλ
ds

}
=
{

0
d f
ds

}
(7.6)

with the initial conditioni = io, λ = 0. Although more elaborate methods exist, the Euler method was found to
be adequately accurate for integrating these equations from| f |= 0 to | f |= 1. A shortMathematicaprogram
used for performing the integration is included in AppendixA.3. Because of symmetry it is sufficient to
consider the mapping between force and current for only one coil. For coil “1”, illustrated in Figure9.3 the
results of the integration are shown in Figure9.4. For comparison purposes, the equivalent mapping between
force and current for the bias linearization scheme is shown in Figure9.5. Upon inspection of Figure9.4, it
can be seen that the direct optimal scheme realizes forces by trying to “pull” only with the coil closest to the
direction of the force. The result is substantially lower power consumption. A plot of resistive losses for the
direct optimal scheme is shown in Figure9.6, and for the bias linearization scheme in Figure9.7. The direct
optimal scheme starts at a low power level, and the losses increase linearly with force magnitude. The bias
linearization scheme starts at a high loss level, and the losses increase quadratically with force magnitude.

Even though resistive losses are greatly decreased by the direct optimization scheme, the cost func-
tion does not necessarily perform well with regards to maximum force before saturation. This measure of
performance is an infinity norm on flux density in the bearing, as shown previously. Because the direct op-
timal method causes one pole to create most of the force, saturation can occur at lower force levels than for
bias linearization with a carefully chosen bias level. Full back iron and journal iron must be used to avoid
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Figure 9.4: Direct optimal force-to-current mapping, c=0.25

pre-mature saturation. For the above example withc = 0.25 and assuming full back iron, a saturation flux
density is achieved atf = 0.713, compared with 1.0 for the bias linearization scheme with full back iron. A
plot of load capacity before saturation as a function of bias levelc is shown in Figure9.8.

It appears that there is still some trade-off between load capacity and minimized power losses. There
are three options:

• Tolerate decreased load capacity resulting from the direct optimal scheme for an 8-pole bearing.

• Enforce an opposed-horseshoe winding for the bearing. The direct optimal scheme can be used on
each axis, per Figure 299, requiring slightly higher power losses but achieving the same load capacity
as opposed horseshoes.

• Extend the direct optimal formulation to include saturation effects. At high force levels, flux would be
redistributed away from the saturated sections, raising the bearing’s load capacity.
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Figure 9.5: Load optimal bias linearization force-to-current mapping

9.3 Direct optimal method including smooth saturation effects

Saturation effects can be included by two different methods. The first and most elegant way to include satu-
ration effects is to write a full set of nonlinear circuit equations for every section of flux path in the actuator.
These nonlinear equations are then incorporated as extra constraints in the optimization. The optimization
problem becomes:

J = min
i

(i− io)′Q(i− io) (9.12)

b′ϒ1b+ f1 = 0
b′ϒ2b+ f2 = 0

C1b+C2h+C3i = 0
b−BH[h] = 0

whereBH[h] is a function representing the virgin magnetization curve of the actuator material, andC1, C2,
andC3 are matrices describing the magnetic circuit equations for the actuator. Each of the contraint equations
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is then combined into cost functionJ via Lagrange multipliers. The optimality conditions are then
∂J
∂i = 0
∂J
∂b = 0
∂J
∂h = 0
∂J
∂λ = 0

(9.13)

A set of ordinary differential equations results from taking the total derivative of (9.13) with respect tos. The
initial condition is found by solving the constraint equations for theb andh that result fromi = io and taking
λ = 0 at f = 0.

9.3.1 2-horseshoe example

As a simple example of including saturation by writing a set of nonlinear circuit equations, consider the
2-horseshoe actuator considered in Figure9.9. This example is analogous to one axis of a radial magnetic
bearing composed of horseshoes. The rotor will be assumed to be infinitely permeable, but each horseshoe
has aB−H relationship of

b = BH[h] =−0.15tanh[0.05h]+1.8tanh[0.005h]+µoh (9.14)

which is approximately the form of theB−H curve for a typical silicon iron. This equation is plotted in
Figure 321 The constraint equations for the optimization are:

h1 l +b1
2go

µo
−N i1 = 0 (9.15)

h2 l +b2
2go

µo
−N i2 = 0 (9.16)

b1−BH[h1] = 0 (9.17)

b2−BH[h2] = 0 (9.18)

cosθ
2a
µo

(b2
1−b2

2)− f = 0 (9.19)

whereθ = π/8,a= (0.01m)2, N = 100 turns,go = 0.4mm, and the iron length of each horseshoe isl = 10cm.
Each one of these constraints is then included in the cost function with a Lagrange multiplier corresponding
to each constraint equation. A bias level approximately one quarter of the way to saturation is

io = 0.25

(
2gobsat

µoN

)
= 2.62A (9.20)

with bsat = 1.65 Tesla.
The initialb1 andh1 are approximatelyb1 = bsat/4= 0.41T andh1 = bsat/(4∗5000µo) = 65.6A/m

in response toio. The exact initial condition must be found by iteratively solving the constraint equations
for f = 0, i = io given this guess for an initial condition. About 3 steps of a Newton-Raphson iteration are
needed to converge tob1 = b2 = 0.403,h1 = h2 = 63.36. Taking the appropriate derivatives and integrating
from f = 0 to the maximum forcefmax = 400N yields the inverse relationship pictured as the solid line
in Figure 328. For comparison, the inverse relationship derived using a constantµr = 5000 for the iron is
denoted by the dashed line. A rather abrupt deviation from the linear model can be noted near the maximum
force due to the saturation effects. However, the smoothness of the inverse mapping is maintained in the
saturation region.

Although this method of including saturation yields a smooth inverse mapping, it can be relatively
costly to implement in more general bearings. For each section of flux path, ab, anh, and two Lagrange
multipliers must be included in the vector of dependent variables to be integrated. For an 8-pole actuator, the
result is 106 variables, implying the inversion of a 106×106 matrix at each step. Although this dimensionality
is certainly not prohibitive, it may be unnecessarily inconvenient.
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9.4 Direct optimal method including hard saturation effects

A more computationally efficient way to include saturation effects is by imposing a set of inequality con-
straints on the flux in every part of the stator. The advantage of this approach is that the current-to-force rela-
tionships need not be broken down into their component equations to include saturation. The problem is still
amenable to a non-dimensionalized form, and the computational effort involved is only mildly greater than
without saturation. The form of the problem including these equality constraints is, for the non-dimensional
8-pole radial journal bearing:

min
i

J(i)≡ (i− io)′Q(i− io) (9.21)

subject to i′M1i = f1
i′M2i = f2

Vsi−bsat≤ 0
−Vsi−bsat≤ 0

where io = c{1,−1,1,−1,1,−1,1,−1}T

whereVs is the matrix developed in (8.16) that relates current to flux density in every section of the stator.
The inequality constraints simply enforce that absolute value of flux density is everywhere less than or equal
to the saturation flux density.

LetCa denote the collection of rows ofVs and−Vs corresponding to active constraints at a particular
step in the integration. Using just the active constraints, (9.21) can be written as a problem with only equality
constraints:

min
i

J(i)≡ (i− io)′Q(i− io) (9.22)

subject to i′M1i = f1
i′M2i = f2

Cai−bsat = 0
where io = c{1,−1,1,−1,1,−1,1,−1}T

Including the additional equality constraints into the cost function with Lagrange multipliers yields the Kuhn-
Tucker optimality conditions:

2Q(i− io)+2λ1M1i +2λ2M2i +C′
aλ3 = 0

i′M1i− f1 = 0

i′Mki− fk = 0 (9.23)

Cai−bsat = 0

or more succinctly as
Fkt[i, f ,λ] = 0 (9.24)

whereλ3 is a vector of Lagrange multipliers associated with the cost of the active constraints. Differentiating
with respect to the variablesdenoting force magnitude yields the system of ordinary differential equations:




2(I +2λaM1 +2λ2M2) 2M1i 2M2i C′
a

2i′M1 0 0 0
2i′M2 0 0 0

Ca 0 0 0






di
ds

dλ1
ds

dλ2
ds

dλ3
ds




=




0
cosθ
sinθ

0


 (9.25)

These equations can be represented more succinctly as

∂Fkt

∂x
dx
ds

=−∂Fkt

∂s
(9.26)

wherex = {i,λ}T .
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In this case, the integration must be done in a more accurate way than the Euler method so that
constraints can be picked up and dropped appropriately. The integration of these equations should proceed in
the following way, similar to the “elevator predictor-corrector” method described in [PG92]:

1. Start atf = 0 with i = io, λ1 = λ2 = 0. None of the inequality constraints should be active at this initial
point, soCa is empty, andλ3 has a dimension of 0.

2. Take a prediction step via Euler integration:

x[s+ds] = x[s]+ds

(
∂Fkt[x]

∂x

)−1 ∂Fkt

∂s
(9.27)

3. Correct with a Newton-Raphson step to make sure that the Kuhn-Tucker conditions are satisfied ex-
actly:

x∗[s+ds] = x[s+ds]− (
∂Fkt[x]

∂x
)−1Fkt[x+ds] (9.28)

wherex∗[s+ ds] represents the corrected value ofx at (s+ ds). Usually only one correction step is
sufficient, given an adequately small step sizeds.

4. Check for constraint violation. If constraints have been violated, add the violated constraints toCa,
and add new elements toλ3 corresponding to the newly imposed constraints. The value of the new
elements ofλ3 is estimated to be 0, since the inequality constraints are close to being met. A series of
Newton-Raphson steps should be taken via (9.28) to accurately determine the values of the new entries
of λ3 with the newly imposed constraints in place. Again, usually one Newton step is sufficient to
correct.

5. Check for newly inactivated constraints. If an element inλ3 becomes negative, the constraint does
not impede progress and should be taken out of the list of active constraints. A Newton correction
step should be taken when a constraint is dropped to make sure that the Kuhn-Tucker conditions are
precisely satisfied.

6. Repeat, taking another Euler prediction step.

This procedure has been applied to the non-dimensionalized8-pole bearing described in AppendixA.
The source code used to implement the procedure is included as §A.4. Inequality constraints were applied so
that the flux density in any pole is limited to|b| ≤ 1. A bias level ofio = 0.25∗{1,−1,1,−1,1,−1,1,−1}T

is employed, identical to the unsaturated case considered earlier. The resulting inverse mapping is pictured
in Figure9.12. Again, only the mapping for the coil on pole “1” is pictured, since the mappings for other
poles are merely rotations of this one. Comparing to Figure9.4, the inverse with saturation loses some of its
smoothness as the saturation constraints are imposed. However, the mapping is still continuous with finite
slope, and therefore realizable. The full load realizable by the bias linearization scheme (f = 1.0) has been at-
tained in every direction. Power loss, pictured in Figure9.13, is only slightly worse than in the unconstrained
case.
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Figure 9.6: Direct optimal resistive losses
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Figure 9.7: Load optimal bias linearization resistive losses
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Figure 9.8: Load capacity versus bias level for direct optimal method.
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Figure 9.9: 2-horseshoe saturating actuator
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Figure 9.11: 2-horseshoe force-to-current including saturation
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Figure 9.12: 8 pole inverse mapping with saturation
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Figure 9.13: 8 pole bearing with saturation–power loss.



Chapter 10

Coil Current Solution–Magnetic
Stereotaxis System

In Chapter4, the relationship between current and force was derived for the magnetic stereotaxis machine.
Besides merely solving this equation, currents must also be chosen so that the magnetic seed is aligned in a
desirable direction. Generally, the seed is prolate, and the magnetization is aligned along the major axis. If
a catheter is pulled, it is attached on one of the ends of the major axis. To minimize tissue damage, the field
and force should be directed along the same line so that the seed presents the smallest possible profile and
minimizes damage to tissue. Misalignment between the force and field vectors is called “skidding.” Although
no skidding at all is desirable, the currents required to realize this constraint are often unacceptably large.
However, some skidding might be tolerable in exchange for lower current requirements. Three scenarios are
therefore considered which impose different constraints on the amount of skidding allowed.

Three different scenarios will be considered; each approach considers different constraints on the
seed orientation.

1. Unlimited Skid Seed.Since the seed attitude is not constrained, the desired force can be created with
the dipole oriented in any position. This configuration represents the most economical force for current
case, since the best dipole orientation can be used.

2. No Skid Seed.The seed is prolate with the magnetization aligned along the major axis for this case. To
cause the least damage to tissue as the seed moves, the dipole must be anti-parallel to the desired force
direction.

3. Limited Skid Seed.The seed is again prolate. However, misalignment (skidding) bounded by a specified
maximum angle is tolerated in exchange for a solution requiring lower currents.

10.1 Unlimited Skid Seed

The problem of producing an arbitrary force on the seed is now that of finding ani that satisfies (4.12):

f j =
γ i′Mj i√
i′B′Bi

(4.12)

for an arbitraryf ; seed orientation is of no particular concern. Generally, there exist many possiblei that sat-
isfy (4.12), since (4.12) represents three equations for six unknowns. This implies up to a three-dimensional
manifold of solutions fori. More equations must be specified to rate the desirability of the valid solutions so
that the most efficient solution is chosen.

69
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One possible measure of solution quality is cost functionC:

C =
i′i√

i′B′Bi
(10.1)

Minimization ofC over the set ofi that satisfies (4.12) is a trade-off between minimizing the currents needed
to produce a force and strongly aligning the seed. In the transformed coordinates,

i =
ı
γ
√

ı′B′Bı (4.13)

The cost function to be minimized is:
J = ı′ı (10.2)

subject toıMj ı = f j ; j = 1,2,3

Eq. (10.2) is the same form minimized by the direct optimal method in Chapter7. Since there is a substantial
threshold force that must be overcome before motion occurs, force levels need never be lowered entirely to
zero. Slew rate limiting around zero force is a non-issue, andio = 0 can be used. Ifio = 0, it is easy to
see that the optimal current for realizing a force at one magnitude scales linearly to produce optimal forces
of the same direction but different magnitude. Determining a path fromf = 0 is then determined solely by
computing the optimal currents necessary to produce a unit force in a given direction. The cost function that
must be minimized is then

Ĵ = ı′ı+
3

∑
j=1

λ j( ı′Mjı− f j) (10.3)

Conditions for an optimum are then

ı+(λ1M1 + λ2M2 + λ3M3) î = 0
ı′M1ı− f1 = 0
ı′M2ı− f2 = 0
ı′M3ı− f3 = 0

(10.4)

Equations (10.4) are a set of 9 equations for 9 unknowns. This system can be solved forî andλ using a
Newton-Raphson iteration starting from a randomly chosen seedı. The continuation approach is not manda-
tory in this case because only a single set of currents is desired, rather than a continuous manifold. However,
a solution found via Newton-Raphson iteration is not necessarily a global minimum; it could also be a maxi-
mum, a saddle point, or a local minimum. It is therefore necessary to solve several times starting from several
starting points to make sure that the actual minimum is found.

10.1.1 No-Skid Seed

Recall the current-to-force relationship:

f j = ı′B′Dj ı (4.14)

Both theB matrix and allD matrices have at most 3 rows. By virtue of the way that these equations are
derived, they naturally fall into the form of (6.28). Eq. (4.14) can be directly transformed into the decomposed
form: 


B

q′D1

q′D2

q′D3


 ı =




q
f1
f2
f3


 (6.29)
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In terms of physical currentsi, the decomposed form is


B
γ
|b|b

′D1
γ
|b|b

′D2
γ
|b|b

′D3


 i =




b
f1
f2
f3


 (10.5)

This time, however, the decomposed form has a meaningful physical interpretation.Bi specifies the direction
and magnitude of the flux density at the seed location. Since it is assumed that the seed turns to align stably
with the field direction, the direction ofBi also specifies the alignment of the dipole.

The “no-skid” constraint additionally requires that the dipole must be stably aligned along the di-
rection of motion. As a matter of convention,m is chosen to be anti-parallel tof in the stable configuration,
implying thatb should also be anti-parallel tof. This convention has been adopted because it matches the
design of existing seeds used for pulling catheters in the MSS. However, the solution for the opposite conven-
tion is easily obtainable. The quadratic form of (4.12) guarantees that the same force is produced regardless
of the sign ofi. However, from (4.5), a change in the sign ofi results in a reversal of field direction. The same
force is produced, but the stable dipole orientation is rotated 180o. Therefore, the negative of the solution
under the present convention is the solution for the same force result withm stably oriented parallel tob
rather than anti-parallel.

From (10.5), f goes linearly with current. It is then sufficient to consider onlyfd, a unit force in
the desired force direction. All other force magnitudes can be achieved by a linear scaling of the currents
required forfd. If the seed is properly aligned,

m = −γfd

b = −αfd
(10.6)

whereα is some presently unknown but positive real number, ensuring that the seed is stably aligned. This
orientation is pictured in Figure10.1.

For ease of notation, define

D[p,m]≡

m′D1

m′D2

m′D3


 (10.7)

We can substitute from (10.7) and (4.5) to form the following system of equations that is linear ini:[
D[p,−γfd]

B[p]

]
i =

{
fd

−α fd

}
(10.8)

or more concisely as

Gi = d where G[p, fd] =
[

D[p,−γfd]
B[p]

]
and d[α] =

{
fd

−α fd

}
(10.9)

if the seed is properly aligned and the correct force is produced. For a given position specified byp and a
desired force directionf, G is a uniquely determined 6×6 matrix. IfG is nonsingular, the set ofi that satisfies
(10.8) is

i = G−1d[α] (10.10)

However, an appropriate value forα has yet to be determined. The only constraint onα is that it
must be positive so that the stable alignment of the seed matches the attitude assumed in (10.8) for forming
F . (If α is negative, the stable orientation rotates by 180o, changing the sign of theF matrix. The resulting
force is then the opposite of the desired force.) Any arbitrary positive realα is a valid solution, but some
solutions are more economical than others to realize. One way to chooseα is such thatα minimizesi′i over
the set of validi. Equation (10.10) can be directly substituted into cost functioni′i:

i′i = d[α]′(G−1)′G−1d[α] (10.11)
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Figure 10.1: MSS seed in stable no-skid orientation.

Equation (10.11) is a quadratic in one variable,α. The extremum of this quadratic must be a minimum since
i′i goes to+∞ asα goes to±∞.

Perhaps the simplest closed-form representation of the optimalα uses the singular value decompo-
sition [HJ85] of G:

G= U ′ΛW (10.12)

U andW are rank[G]×n orthonormal matrices.Λ is a diagonal matrix of dimension rank[G] whose entries
are all greater than zero and are arranged in non-increasing order. The rows ofU represent a basis for the
output ofGi, and the diagonal entry corresponding to a row ofU represents the inverse “cost” of realizing a
unit output parallel to that column. Substituting (10.12) into (10.11) and minimizing with respect toα yields:

αopt =

{
f ′d 0

}
U ′Λ−2U

{
0
fd

}
{

0 f ′d
}

U ′Λ−2U
{

0
fd

} (10.13)

There is, however, no guarantee thatαopt is positive. Parameterα should then be chosen as

α = max[αopt,αmin] (10.14)

whereαmin is an arbitrarily chosen minimum acceptable positive value, thereby ensuring that the dipole is
properly oriented and adequately aligned.

In certain pathological cases,G is not invertible. These instances most often occur along lines of
symmetry. For some of these cases, however, an answer satisfying (10.8) may still exist. IfG is of rank 5
rather than of rank 6 (and therefore singular), matrixU that forms a basis for the output ofGi is not square.
The cost to realize an output with any component orthogonal to the rows ofU is therefore infinite. For a
solution to exist,α must be picked so thatd[α] is spanned byU (the vectord must be perpendicular to the
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unrealizable output vector):

0 = u′d[α] ⇒ α =
u′
{

fd
0

}

u′
{

0
fd

} (10.15)

whereu is the vector orthogonal to the rows ofU. If (10.15) yieldsα > 0, a solution that satisfies the no-skid
conditions (and is perpendicular to the unrealizable space of outputs) exists. It is also interesting to note that
αopt (10.13) converges to (10.15) asG becomes singular.

In the singular case, there are multiple ways to produce any realizable output, since there is a six-
dimensional space of inputs and a five-dimensional space of outputs. It can be shown that the most efficient
way (in ani′i sense) to produce the solution for the singular case is

i = W ′Λ−1Ud[α] (10.16)

whereα satisfies (10.15).

10.1.2 Limited-Skid Seed

Under limited skid conditions, some misalignment betweenm and−f is considered acceptable. In this case,
b is chosen so that the dipole is stably oriented at a small misalignment with-f. The desiredb direction can
be thought of as the direction off rotated through some small angles about vectors perpendicular tof.

Define a new reference frame E such that


e1

e2

e3


= T




n1

n2

n3


 (10.17)

where

T =


 e11 e12 e13

fd,1 fd,2 fd,3

(e12 fd,3−e13 fd,2) (e13 fd,1−e11 fd,3) (e11 fd,2−e12 fd,1)


 (10.18)

ande1 is some arbitrarily chosen unit vector such that

e11 fd,1 +e12 fd,2 +e13 fd,3 = 0 (10.19)

Unit vectorse1 ande3 are perpendicular ande2 is parallel to the desired force direction. Define

f̂d ≡ (−sinε2)e1 +(cosε1 cosε2)e2 +(sinε1 cosε2)e3 (10.20)

Anglesε1 andε2 represent small rotations aboute1 ande3 respectively. Vector̂fd is fd misaligned byε1 and
ε2. With respect to the E frame:

f̂d(ε1,ε3) = T ′




−sinε2

cosε1cosε2

sinε1cosε2


 (10.21)

Instead of (10.6), the conditions now required are

m = −γf̂d

b = −αf̂d
(10.22)

so that the dipole is stably positioned and misaligned with−fd by a small amount. These conditions imply
the linear system

Gi =
{

fd
−α f̂d

}
where G[p, f̂d] =

[
D[p,−γf̂d]

B[p]

]
(10.23)
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Figure 10.2: Magnetic Stereotaxis System.

The solutions fori and an appropriateα proceed exactly as for the no-skid case, given some arbitrary values
of ε1 andε2.

A convenient limit on the allowable skid is

ε2
1 + ε2

2 ≤ ε2
max (10.24)

whereεmax is the largest allowable skid angle. A search can then be made over the allowable region ofε’s for
the most economical solution.

10.2 Examples

As a demonstration of the above solutions, the procedures will be appled to the Magnetic Stereotaxis Sys-
tem (MSS). Since each problem is posed over a five-dimensional domain space of independent variables
(consisting of seed location coordinates and two degrees of freedom to orient the force direction), an exhaus-
tive comparison under all operating conditions is impractical. However, merely examining several randomly
chosen points in the operating region is sufficient to reveal some of the character of each solution.

Before specific operating points can be tested, the general layout and specifications of the MSS must
be described. This machine consists of six large superconducting coils arranged on the faces of a flattened
cubical structure, as depicted in Figure10.2. A right-handed coordinate system is defined as shown in the
figure. Each axis of the coordinate system extends through the center of a pair of coils. The origin of the
coordinate system is located at the center of the machine. Fluoroscopes for sensing seed position are aligned
along theX− andY−axes, and the patient’s head enters the machine along theZ−axis.

Due to ergonomic constraints, the coils centered on theX− andY−axes are identical, whereas the
two coils centered on theZ−axis are slightly flattened and closer together. The physical dimensions of these
coils are given in Table10.1. One seed employed in the MSS has a strength of 0.016 A·m2. This seed is
a circular cylinder approximately 3 mm in diameter and 3 mm tall. Rounded plastic end pieces are usually
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Coil Dimensions
X,Y axes Z axis

Inner Dia. 28.00 cm 32.10 cm
Outer Dia. 37.20 cm 41.10 cm
Thickness 7.01 cm 3.72 cm
Distance between
coil faces 45.69 cm 29.38 cm
turns/cm2 207.2 207.2
Max. current 100 A 100 A

Table 10.1: MSS Coil Dimensions

# Point Force direction
1 { 1.50, 7.40, -4.68} { -0.936, 0.338, -0.094}
2 { 2.88, 2.09, -2.89} { 0.736, -0.624, 0.259}
3 { -5.78, 0.28, -4.34} { -0.101, -0.678, -0.727}
4 { 4.15, -7.29, 6.79} { 0.456, -0.234, -0.858}
5 { 5.00, 5.00, 0.00} { 0.707, 0.707, 0.00}
6 { -3.30, -4.23, 5.04} { 0.506, -0.046, 0.860}

Table 10.2: Test points and desired force directions

attached to decrease resistance to seed motion. More detailed descriptions of the device, associated power
electronics, and performance are contained in [GRB+94], [MRW95b] and [MRW95a].

The operating region of the MSS lies within a box that extends from -10 cm to 10 cm on the X-
and Y-axes and from -14 cm to 6 cm on the Z-axis. Inside this region, a set of four random points and
force directions have been chosen. Two more specifically chosen points are included because they represent
interesting special cases where theG matrix is singular in the no-skid case. These points are summarized in
Table10.2.

For the no-skid and limited-skid cases, there is noa priori basis upon which to assume the minimum
acceptable value ofα necessary to properly align the dipole. This value should most properly be determined
experimentally. In the absence of these experimental results,αmin will be assumed zero arbitrarily, since this
is the lowest possible value for maintaining a proper dipole alignment once that alignment is achieved.

10.2.1 No-Skid Case

Under the No-Skid conditions, currents are determined by solving the linear equation (10.8). The value of
the arbitrary parameterα is chosen to be the greater of theα that minimizes (10.11) or αmin. Each of the
points in Table10.2are considered under the No-Skid conditions, and the solution currents are summarized
in Table10.3. Examples (1.1-1.4) represent the typical solutions to (10.8). Example (1.1) is found to require
enormously high currents, whereas other positions are less expensive. It is interesting to note that there is
no particular propensity forαopt as solved by (10.13) to turn out positive. In three of these examples, the
arbitrary value ofαmin has to be imposed for a properly aligned solution.

In examples (1.5) and (1.6), theG matrix of (10.8) is singular. These two are specifically chosen
because (1.5) is a well-behaved singularity, and (1.6) is ill-behaved. Example (1.5) is typical of singularities
in the MSS that arise from symmetry. These singularities occur when the seed is located on a plane of
symmetry and the desired direction of motion is also within the plane of symmetry. In these cases, the
G matrix is singular, but the unachievable space is perpendicular to alld[α] vectors, implying (10.15) is
uniformly satisfied for all alpha. The choice ofα is again arbitrary, and a good solution results. Example
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Currents, A/N
# -X +X -Y +Y -Z +Z αopt

1.1 20161 20165 1389 13041 14300 15803 0.
1.2 -3847 4082 5616 -1675 -990 639 40.7
1.3 -3735 -5304 -3057 -3112 -2348 -1571 0.
1.4 6496 6580 5000 2805 2506 4002 0.
1.5 669 -16 669 -16 -1359 -1359 0.85
1.6 - - - - - - -4.18

Table 10.3: Coil currents, no-skid case.

Figure 10.3: 2-norm of coil currents versus force orientation for example 1.2.

(1.6), however, does not yield a usable solution. When (10.15) is solved for theα that yields an answer
perpendicular to the unachievable space, thatα is negative – the only realizable alignment of theb vector
with f has the wrong orientation.

If singularities such as (1.6) were a rare occurrence, a strategy would be to simply catalog and avoid
them. However, this is not the case. Every point has some directions that are singular or badly conditioned
in a MSS with six coils. For example, consider rotations of the desired force direction in (1.2). Let angles
ε1 andε2 represent rotation angles away from a nominal position, as detailed in Section10.1.2. Figure10.3
represents the 2-norm of the coil currents required to realize a no-skid force in the direction of (1.2) rotated
by ε1 andε2. From this figure, it is evident that even though the specific direction considered in (1.2) is
nonsingular and well-behaved, many other possible force directions produced from the same point are very
badly behaved.
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Currents, A/N
# -X +X -Y +Y -Z +Z αopt ε

2.1 1196 855 856 191 -477 -1717 0. 19.9o

2.2 -431 1068 1721 154 -778 -16718.05 19.9o

2.3 -610 -2755 971 730 441 917 0.94 8.49o

2.4 3052 2709 1533 -1073 1994 1698 0. 18.04o

2.5 669 -16 669 -16 -1360 -1360 0.85 0.o

2.6 600 1282 -574 -2089 1214 577 0.97 8.94o

Table 10.4: Coil currents, limited skid case.

10.2.2 Limited-Skid Case

For the limited-skid case, a misalignment of up to 20o is arbitrarily deemed tolerable. Under the Limited-Skid
conditions, currents are determined by solving (10.23) on a fine grid of perturbed seed orientations inside the
allowable skid region. At any particular seed orientation, the solution only requires the inversion of a 6×6
matrix. At each orientation, the value of the arbitrary parameterα is chosen to be the greater of theα that
minimizes (10.11) or αmin. The orientation with the lowest requiredi′i is then chosen as the solution. Each
of the seed location and force direction pairs in Table10.2is considered under the Limited-Skid conditions,
and the solution currents are summarized in Table 389.

In general, there is a marked improvement in the current levels required for a given force. For in-
stance, example (2.1) shows an order-of-magnitude decrease in the peak required current. The other examples
exhibit a similar improvement in performance. Only (2.5) remains unchanged; the locally most efficient ori-
entation is the no-skid orientation for this particular example. Of special note is example (2.6). In the no-skid
configuration, no solution existed. With less than 10o of misalignment, however, this example has a fairly
economical solution.

The improvements in solution economy rely on the fact that economical orientations are often quite
close to orientations that are prohibitively expensive to realize. In the particular case of (2.1), the no-skid
solution is quite expensive. In Figure10.4, it can be seen that the no-skid orientation (at the center of the
figure) lies very close to a ridge of singularities. By allowing misalignment, an attitude at the far edge of the
figure and away from the singularities is used.

10.2.3 Unlimited-Skid Case

The dipole orientation will now be considered unconstrained. Instead of simply solving linear equations, the
unconstrained dipole orientation requires the solution of (10.4). A Newton-Raphson iteration starting from
a randomly chosen set of currents was used to solve this equation. There are typically a finite number of
local minima (usually about five) to which this iteration can converge, so the iteration was run several times
to ensure a global minimum. The results for this scenario corresponding to the test points in Table10.3are
summarized in Table10.5.

As with the limited-skid case, the unlimited skid case produced a valid result for each case. The
current magnitudes are roughly equivalent to the results of the limited-skid case, but each example now has
an α of around 10; to realize theseαmin of 10 in the limited skid case would increase the required current
magnitudes, possibly considerably.

A similar solution to the unlimited skid case would be obtained by applying the limited-skid condi-
tions overε’s ranging from−180o to 180o. The value ofαmin would again be explicitly chosen, an option
that does not exist in the quadratic formulation.
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Figure 10.4: 2-norm of coil currents versus dipole orientation for example 2.1.

Currents, A/N
# -X +X -Y +Y -Z +Z αopt ε

3.1 -1832 -273 69 1116 1025 226 9.73 90.58o

3.2 135 -1442 1334 -251 -226 2290 9.08 103.68o

3.3 362 -298 1537 -277 -953 -784 8.69 83.75o

3.4 -1132 942 -1423 993 2210 -724 16.78 57.81o

3.5 -31 -849 31 849 0. 0. 8.09 90.o

3.6 -459 1439 254 -297 91 -1186 10.8 118.02o

Table 10.5: Coil currents, unlimited skid case.



Chapter 11

Conclusions

This dissertation has presented a general form for considering the magnetic inverse problem in magnetic
actuators. Specifically considered were inverse problems that have a homogeneous quadratic relationship
between applied current and resulting force. Typically, many possible inverse mappings exist. The task is
then not only to find an inverse, but to find, in some sense, thebestinverse. Two different methods of inverting
the current-to-force relationship were considered based on different definitions of an “optimal” inverse:

• A generalized bias linearization approach. Necessary conditions for bias linearization were considered.
A numerical method for finding linearizing currents was developed, and an analytical method that can
be used in some special but practical cases were also presented.

• A direct optimal method for minimizing a quadratic cost on the input currents. A continuation method
was presented for solving this optimization problem. Extensions to the case of a saturating actuator
were developed.

These methodologies were successfully applied to the specific examples of magnetic bearings and the mag-
netic stereotaxis system.

Several important results come from the application of these methods. The first is that magnetic
bearings can be made fault-tolerant through the use of generalized bias linearization without any physical
design change in the bearings themselves. This result may be crucial to the use of magnetic bearings in
aircraft engine applications, where fault-tolerance is required.

The direct optimal methods may also be important to specific magnetic bearing applications. In
precision applications, changes in physical dimensions due to thermal expansion may be unacceptable. The
direct optimal methods keep power losses as small as possible while still achieving maximum load capacity.

The methods developed in this dissertation are also an important step in the development of the
Magnetic Stereotaxis System. Previous controllers relied on the fact that the seed was in the exact center of
the MSS so that the problem could be decomposed into 3 decoupled problems; however, this scheme breaks
down rapidly as the seed moves away from the center of the helmet. The generalized bias linearization scheme
as applied to the MSS is not limited to any specific coil geometry. This scheme implies that a MSS could
be readily controlled with many small coils located close to the head, rather than a few large coils located
farther away. The use of many coils would also help to eliminate the singularity problems that arise in the
present MSS along lines of symmetry. Acceptable currents might then be found for any seed orientation, thus
avoiding the need for “skidding” altogether.

Although not considered at length in this dissertation, the methods developed here could be used as
a valuable tool in evaluating the utility of proposed actuator designs. Actuators could then be designed to give
the best power loss performance or fault-tolerance in the case of magnetic bearings, or robustness to sensor
error and seed position variation in the Magnetic Stereotaxis System.

There are many directions of further inquiry in which the present work could be extended. Specif-
ically, the treatment could be extended to address the non-homogeneous quadratic current-to-force relation-
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ships that arise in machines employing permanent magnet biasing and in systems that are biased by gravity
loading.

As of this writing, only limited portions of the theory developed in this dissertation have been im-
plemented in hardware. A number of issues arising from implementation may need to be addressed. These
issues might include:

• Details of transition between sets of linearizing currents when failures are detected. There may be
problems with slew rate limiting during the transition.

• Robustness issues. Degradation of the inverse mappings in the presence of modeling errors has not
been addressed, and could be of concern. Specifically in the case of the MSS, sensitivity to errors in
the sensed position of the seed and to materials properties of the brain tissue have not been addressed.

With regard to bias linearization, several interesting theoretical questions remain unanswered. An
interesting line of inquiry might be the discovery of a way of deriving the equations for a device characterized
by magnetic circuits that yields a “natural” decomposed form, as occurs serendipitously for the MSS. Failing
that, a better way of finding common totally isotropic spaces rather than by either intuiton or numerical
search would be in order. Although tighter necessary conditions for linearizability have been developed in
the present work, useful necessary and sufficient conditions for linearizability have yet to be found.

The application of continuation methods to the magnetic inverse problem is new, and much extension
might be done with this approach. It would be interesting to attempt to prove that a continuation algorithm
started from a validio does not run into a singular point. Although no ill-conditioned cases have yet been
encountered, it is not at all clear that the problem is well-conditioned for every device having one or more
valid io vector. An interesting extension would also be the on-line integration of (7.6) in terms of time, rather
than the artificial variables. This might be included in some sort of feedback linearization controller and
eliminate the need for a look-up table.
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Appendix A

Symmetric 8-pole magnetic bearing

The symmetric eight-pole bearing (pictured in FigureA.1) currently is common in moderate capacity radial
bearing design; an examination of the characteristics of this design is therefore of great practical value.

To deal with this bearing in as general a way as possible, it is desirable to define a non-dimensionalized
bearing. Define non-dimensional current, flux density, force, and displacement as respectively:

b =
b

bsat
(A.1)

i =
(

µoN
gobsat

)
i (A.2)

f =
(

µo

ab2
sat

)
f (A.3)

x =
x
go

; y =
y
go

(A.4)

wherea is pole area,go is nominal air gap, andN turns of wire are wound independently around each pole.
Analyzing the magnetic circuits for this non-dimensional bearing yields the following matrices:

R =




g1 −g2 0 0 0 0 0 0
0 g2 −g3 0 0 0 0 0
0 0 g3 −g4 0 0 0 0
0 0 0 g4 −g5 0 0 0
0 0 0 0 g5 −g6 0 0
0 0 0 0 0 g6 −g7 0
0 0 0 0 0 0 g7 −g8

1 1 1 1 1 1 1 1




N =




1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1
0 0 0 0 0 0 0 0




where

gj = 1−x cos

(
jπ
4

+
π
8

)
−ysin

(
jπ
4

+
π
8

)

84



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 85

Figure A.1: 8-pole symmetric bearing.

For the centered position, the flux in each gap is determined by

b = V i =




7 −1 −1 −1 −1 −1 −1 −1
−1 7 −1 −1 −1 −1 −1 −1
−1 −1 7 −1 −1 −1 −1 −1
−1 −1 −1 7 −1 −1 −1 −1
−1 −1 −1 −1 7 −1 −1 −1
−1 −1 −1 −1 −1 7 −1 −1
−1 −1 −1 −1 −1 −1 7 −1
−1 −1 −1 −1 −1 −1 −1 7




i

TheM matrices for each force direction can now be built via (3.14):

Mx =

2
6664

0:346455 �0:0816602 �0:0338248 0 0 �0:0338248 �0:0816602 �0:115485

�0:0816602 0:143506 0 0:0338248 0:0338248 0 �0:0478354 �0:0816602

�0:0338248 0 �0:143506 0:0816602 0:0816602 0:0478354 0 �0:0338248

0 0:0338248 0:0816602 �0:346455 0:115485 0:0816602 0:0338248 0

0 0:0338248 0:0816602 0:115485 �0:346455 0:0816602 0:0338248 0

�0:0338248 0 0:0478354 0:0816602 0:0816602 �0:143506 0 �0:0338248

�0:0816602 �0:0478354 0 0:0338248 0:0338248 0 0:143506 �0:0816602

�0:115485 �0:0816602 �0:0338248 0 0 �0:0338248 �0:0816602 0:346455

3
7775

My =

2
6664

0:143506 �0:0816602 �0:0816602 �0:0478354 0 0:0338248 0:0338248 0

�0:0816602 0:346455 �0:115485 �0:0816602 �0:0338248 0 0 �0:0338248

�0:0816602 �0:115485 0:346455 �0:0816602 �0:0338248 0 0 �0:0338248

�0:0478354 �0:0816602 �0:0816602 0:143506 0 0:0338248 0:0338248 0

0 �0:0338248 �0:0338248 0 �0:143506 0:0816602 0:0816602 0:0478354

0:0338248 0 0 0:0338248 0:0816602 �0:346455 0:115485 0:0816602

0:0338248 0 0 0:0338248 0:0816602 0:115485 �0:346455 0:0816602

0 �0:0338248 �0:0338248 0 0:0478354 0:0816602 0:0816602 �0:143506

3
7775

Position-dependence of these matrices can be approximated by the one-term Taylor series described in (3.36).
Necessities for computing derivatives of the force matrices with respect to displacement are the derivatives
of the reluctance matrixRwith respect to position:
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@R

@x
=

2
6666664

� cos
�
8

cos
3�
8

0 0 0 0 0 0

0 � cos
3�
8

cos
5�
8

0 0 0 0 0

0 0 � cos
5�
8

cos
7�
8

0 0 0 0

0 0 0 � cos
7�
8

cos
9�
8

0 0 0

0 0 0 0 � cos
9�
8

cos
11�
8

0 0

0 0 0 0 0 � cos
11�
8

cos
13�
8

0

0 0 0 0 0 0 � cos
13�
8

cos
15�
8

0 0 0 0 0 0 0 0

3
7777775

@R

@y
=

2
6666664

� sin
�
8

sin
3�
8

0 0 0 0 0 0

0 � sin
3�
8

sin
5�
8

0 0 0 0 0

0 0 � sin
5�
8

sin
7�
8

0 0 0 0

0 0 0 � sin
7�
8

sin
9�
8

0 0 0

0 0 0 0 � sin
9�
8

sin
11�
8

0 0

0 0 0 0 0 � sin
11�
8

sin
13�
8

0

0 0 0 0 0 0 � sin
13�
8

sin
15�
8

0 0 0 0 0 0 0 0

3
7777775

The derivatives ofMx andMy are then computed by substituting into (3.39) to yield:

@Mx

@x
=

2
6664

0:595971 �0:106694 �0:0183058 �0:0441942 �0:0441942 �0:0183058 �0:106694 �0:257583

�0:106694 0:154029 0:0441942 �0:0183058 �0:0183058 0:0441942 0:00758252 �0:106694

�0:0183058 0:0441942 0:154029 �0:106694 �0:106694 0:00758252 0:0441942 �0:0183058

�0:0441942 �0:0183058 �0:106694 0:595971 �0:257583 �0:106694 �0:0183058 �0:0441942

�0:0441942 �0:0183058 �0:106694 �0:257583 0:595971 �0:106694 �0:0183058 �0:0441942

�0:0183058 0:0441942 0:00758252 �0:106694 �0:106694 0:154029 0:0441942 �0:0183058

�0:106694 0:00758252 0:0441942 �0:0183058 �0:0183058 0:0441942 0:154029 �0:106694

�0:257583 �0:106694 �0:0183058 �0:0441942 �0:0441942 �0:0183058 �0:106694 0:595971

3
7775

@Mx

@y
=

2
6664

0:220971 �0:150888 �0:0441942 0 �0:0441942 �0:0258883 0:0441942 0

�0:150888 0:220971 0 0:0441942 �0:0258883 �0:0441942 0 �0:0441942

�0:0441942 0 �0:220971 0:150888 0:0441942 0 0:0441942 0:0258883

0 0:0441942 0:150888 �0:220971 0 �0:0441942 0:0258883 0:0441942

�0:0441942 �0:0258883 0:0441942 0 0:220971 �0:150888 �0:0441942 0

�0:0258883 �0:0441942 0 �0:0441942 �0:150888 0:220971 0 0:0441942

0:0441942 0 0:0441942 0:0258883 �0:0441942 0 �0:220971 0:150888

0 �0:0441942 0:0258883 0:0441942 0 0:0441942 0:150888 �0:220971

3
7775

@My

@x
=

2
6664

0:220971 �0:150888 �0:0441942 0 �0:0441942 �0:0258883 0:0441942 0

�0:150888 0:220971 0 0:0441942 �0:0258883 �0:0441942 0 �0:0441942

�0:0441942 0 �0:220971 0:150888 0:0441942 0 0:0441942 0:0258883

0 0:0441942 0:150888 �0:220971 0 �0:0441942 0:0258883 0:0441942

�0:0441942 �0:0258883 0:0441942 0 0:220971 �0:150888 �0:0441942 0

�0:0258883 �0:0441942 0 �0:0441942 �0:150888 0:220971 0 0:0441942

0:0441942 0 0:0441942 0:0258883 �0:0441942 0 �0:220971 0:150888

0 �0:0441942 0:0258883 0:0441942 0 0:0441942 0:150888 �0:220971

3
7775

@My

@y
=

2
6664

0:154029 �0:106694 �0:106694 0:00758252 0:0441942 �0:0183058 �0:0183058 0:0441942

�0:106694 0:595971 �0:257583 �0:106694 �0:0183058 �0:0441942 �0:0441942 �0:0183058

�0:106694 �0:257583 0:595971 �0:106694 �0:0183058 �0:0441942 �0:0441942 �0:0183058

0:00758252 �0:106694 �0:106694 0:154029 0:0441942 �0:0183058 �0:0183058 0:0441942

0:0441942 �0:0183058 �0:0183058 0:0441942 0:154029 �0:106694 �0:106694 0:00758252

�0:0183058 �0:0441942 �0:0441942 �0:0183058 �0:106694 0:595971 �0:257583 �0:106694

�0:0183058 �0:0441942 �0:0441942 �0:0183058 �0:106694 �0:257583 0:595971 �0:106694

0:0441942 �0:0183058 �0:0183058 0:0441942 0:00758252 �0:106694 �0:106694 0:154029

3
7775

A.1 Failure configuration bias linearization currents

In all, there are 93 different ways that a bearing can fail between 0 and 3 coils. All of these failures are,
however, described by only 11 unique failure maps due to the symmetry of the bearing; all other mappings
are simply rotations and permutations of these unique maps. If a “1” represents an active coil, and a “0”
represents an inactive coil, the unique configurations are:
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No. Coils On
1 11111111
2 01111111
3 00111111
4 01011111
5 01101111
6 01110111
7 00011111
8 00101111
9 00110111
10 01010111
11 01011011

As explored in Chapter 249, an analytical method can be used to decompose the bias linearization
problem and yield manifolds of solutions. Alternatively, a purely numerical approach (the reduced gradient
method) can be used to solve for linearizing currents. Whichever method is used, the problem ultimately
becomes a numerical search. If the analytical method is used, it is not cleara priori which manifold results in
the best solution. It is also not clear which arbitrarily chosen coefficientsq yield the best solution. The best
q must be found by some sort of search. Because no method for finding an optimal set of linearizing currents
is clearly the most efficient, the reduced gradient method was used to find aW for each failure configuration.
A description and listing of the program that implements the reduced gradient method is given in §A.2. For
the purposes of computingbmax, the width of the back iron and journal iron was assumed to be1

2 the width
of the legs. This is a typical design for 8-pole bearings run with aNSNSbiasing scheme.

With a typicalNSNScontrol scheme with all coils active and limiting saturation occurring in the
legs, the flux levels in the gap would be set to1

2 the saturation level, implying the magnitude ofi = 0.5 in
each coil. The maximum load would then be approximatelyf

max
= 1.

Through use ofW that do not employ certain coils, the occurrence of faults can be tolerated. The
price for these failures is a decrease in bearing load capacity. The relative load capacity for each failure
configuration using the best discoveredW for each set and using (8.21) to define load capacity is:

No. Relative Load Capacity
1 100%
2 100%
3 48.0%
4 44.0%
5 51.3%
6 56.5%
7 14.0%
8 26.0%
9 36.7%
10 41.0%
11 31.3%

For each set of failure currents, the accompanying plot represents load capacity versus force orien-
tation. Active coil locations are represented by arrows on these plots. The reported load capacity,f

max
, is

load capacity for the worst force orientation, as specified by (8.21).



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 88

To convertW into dimensional units,

W = W ·



(

gobsat
µo N

)
0 0

0
(

go
absatN

)
0

0 0
(

go
absatN

)

 (A.5)

This conversion puts the first column ofW into units of current, and the second and third columns into current
per unit force. To achieve the optimal load capacity, the value ofîo should be 1.
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A.1.1 Case 1

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0.505134 0.457245 0.189397
−0.505134 −0.189397 −0.457245
0.505134 −0.189397 0.457245
−0.505134 0.457245 −0.189397
0.505134 −0.457245 −0.189397
−0.505134 0.189397 0.457245
0.505134 0.189397 −0.457245
−0.505134 −0.457245 0.189397




f
max

= 0.923782
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A.1.2 Case 2

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
−1.01027 −0.646641 −0.646641

0. −0.646641 0.267848
−1.01027 0. −0.378793

0. −0.914488 −0.378793
−1.01027 −0.267848 0.267848

0. −0.267848 −0.646641
−1.01027 −0.914488 0.




f
max

= 0.923782
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A.1.3 Case 3

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
0. 0. 0.

−0.745322 −0.505285 −1.24809
0.274924 −1.19563 −0.482923
−0.500997 0.207802 0.0736056
−0.30642 −0.270924 −0.119114
0.333943 −0.576502 −1.28494
−0.717777 −1.29388 −0.547609




f
max

= 0.443783
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A.1.4 Case 4

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
0.4572 0.829465 1.79418

0. 0. 0.
0.420565 −1.42794 1.73208
−0.168895 0.334289 1.78272
0.392786 −0.147955 −0.231423
0.1394 0.922727 1.40995

−0.263455 −1.18527 1.91783




f
max

= 0.40625
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A.1.5 Case 5

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
0.445917 0.731063 0.828046
−0.420705 0.727704 −0.623231

0. 0. 0.
0.527528 −0.640086 −0.0244798
−0.250088 0.483385 0.82879

0.31721 0.441614 −0.619126
−0.48957 −0.646243 0.180955




f
max

= 0.473622
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A.1.6 Case 6

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
−0.265606 −0.416743 −1.28104
0.485629 0.102261 0.146081
−0.3711 1.1636 −0.490013

0. 0. 0.
0.439899 −0.416743 −1.28104
−0.299692 0.102261 0.146081
0.535831 1.1636 −0.490013




f
max

= 0.521902



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 95

A.1.7 Case 7

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
0. 0. 0.
0. 0. 0.

−0.666665 0.448349 −1.53073
0. −0.951079 −2.29611
0. −0.951079 −2.29611
0. −0.951079 −2.29611

−0.666662 −1.39943 −0.76538




f
max

= 0.129543
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A.1.8 Case 8

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
0. 0. 0.

−0.710937 −0.234225 −1.34591
0. 0. 0.

0.241507 −1.75379 −1.0097
−0.405378 −0.748979 −0.108603
0.162386 −0.864742 −1.53023
−0.678722 −1.69752 −0.654697




f
max

= 0.240411
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A.1.9 Case 9

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
0. 0. 0.

0.700709 0.74353 1.54867
−0.128455 2.02657 0.939184

0. 0. 0.
0.504082 0. 0.
−0.230737 0.74353 1.54867
0.589266 2.02657 0.939184




f
max

= 0.338875
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A.1.10 Case 10

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
−0.691558 −0.618983 −1.5709

0. 0. 0.
−0.691552 1.54853 −0.673114

0. 0. 0.
−0.0887534 −0.618983 −1.5709
−0.794338 0. 0.
−0.0887668 1.54853 −0.673114




f
max

= 0.378526
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A.1.11 Case 11

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

W =




0. 0. 0.
−0.644074 −1.05866 −1.11147

0. 0. 0.
−0.0497678 −2.14374 0.963628
−0.658303 −0.106088 0.729123

0. 0. 0.
0.0724449 −0.731037 −1.11456
−0.542448 −2.25897 0.623658




f
max

= 0.289147
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A.2 C code for determiningW via the reduced gradient method

A.2.1 Program findw.c

This program implements a reduced gradient method search for a locally optimalW matrix in the sense of
giving the highest possible load capacity. This program specifically addresses radial magnetic bearings in
which each pole has the same face area, nominal gap, and number of turns. This program treats bearings in
the same non-dimensional formulation developed earlier in this appendix.

The program first reads a data file, specified as a command line option, that describes the geometry
of the particular bearing in question. Then, a number of feasible solutions (specified byHOW_MANY) are found
using the modified Newton-Raphson method. After the specified number of feasible solutions are found, the
best feasible solution is used as the starting point of a reduced gradient descent. The length of each gradient
step is specified byGradStepLength . A value of 0.01 has been found to work well. A number of gradient
steps are taken until further steps bring no improvement in solution cost. The program is then terminated,
and the bestW found is reported along with the nondimensional load capacity associated with thatW. The
output is correctly scaled so that (451) can be used to convert the output to dimensional units.

Specific subroutines employed in the program are as follows:

GetMaxB This subroutine takes a set of linearizing currents and a specific biasing level and returns the
absolute value of the worst-case flux density over allθ resulting from a force of magnitude 1. Since
each particular flux density is the sum of a constant, a sine, and a cosine, the worst-case magnitude is
easily determined by adding the absolute value of the constant component to the square root of the sum
of the squared coefficients of the sine and cosine terms.

Rule This subroutine evaluates thebmax produced for a given bias linearization solution for the best case
biasing levelζ. A golden section search is performed to find the bestζ.

IRule An alternate entry intoRule .

ReadEm Reads the specified data file and forms the matricesMx, My, andVs necessary to find and rank
variousW matrices.

MakeH Creates theH matrix.

#include<math.h>
#include<stdio.h>
#include<stdlib.h>

#define DT 0.5 /* modified Newton-Raphson step size */
#define HOW_MANY 1000 /* number of solutions to be found */
#define MAXSTEPS 1000 /* maximum iterations allowed for any one soln. */
#define VERB FALSE /* flag for verbose mode */
#define Del 0.0001 /* step length used to determine reduced gradient */
#define GradStepLength 0.01

struct Entry{
int co,ve,ma;

};

#include"mathstuf.c"

double GetMaxB(I,V,Vb,k,dim)
double **I,**V,**Vb;
double k;
int dim;
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{
int i;
double max,*rb,*rx,*ry,*res;

res=(double *)calloc(dim,sizeof(double));
rx=(double *)calloc(dim,sizeof(double));
ry=(double *)calloc(dim,sizeof(double));
rb=(double *)calloc(dim,sizeof(double));

max=0.;
vTimes(V,I[0],rb,dim);
vTimes(V,I[1],rx,dim);
vTimes(V,I[2],ry,dim);
for(i=0;i<dim;i++)

res[i]=k*fabs(rb[i]) + sqrt(rx[i]*rx[i]+ry[i]*ry[i])/k;
for(i=0;i<dim;i++)

if(res[i]>max) max=res[i];

vTimes(Vb,I[0],rb,dim);
vTimes(Vb,I[1],rx,dim);
vTimes(Vb,I[2],ry,dim);
for(i=0;i<dim;i++)

res[i]=k*fabs(rb[i]) + sqrt(rx[i]*rx[i]+ry[i]*ry[i])/k;
for(i=0;i<dim;i++)

if(res[i]>max) max=res[i];

free(res); free(rx); free(ry); free(rb);
return max;

}

double Rule(I,V,Vb,dim,zeta)
double **I,**V,**Vb,*zeta;
int dim;

{
int i,j,l;
double c1=0,c2=0,c3=0,c4=0,H,max=0,t,Bm,z0,z1;
double q[4],k[4];

/* c1 = Ibias . I bias
c2 = Ix . Ix
c3 = Iy . Iy
c4 = Ix . Iy

*/

for(i=0;i<dim;i++)
{

c1+=(I[0][i]*I[0][i]);
c2+=(I[1][i]*I[1][i]);
c3+=(I[2][i]*I[2][i]);
c4+=(I[1][i]*I[2][i]);

}

/* get an initial estimate for bias level */
for(t=0.0,j=0,H=0.0;t<2*Pi;t+=Pi/300.)
{
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j++;
H+=sqrt(sqrt((2*cos(t)*sin(t)*c4 + cos(t)*cos(t)*c2 +

sin(t)*sin(t)*c3)/c1));
}
H/=((double) j);

k[0]=0.5*H;k[1]=0.8*H;k[2]=1.2*H;k[3]=1.5*H;
for(j=0;j<4;j++) q[j]=GetMaxB(I,V,Vb,k[j],dim);

for(j=0;j<40;j++)
{

for(i=1,l=0;i<4;i++)
if(q[i]<q[l]) l=i;

if(l<2){
k[3]=k[2];q[3]=q[2];

}
else{

k[0]=k[1];q[0]=q[1];
}

k[1]=k[0]+0.3*(k[3]-k[0])/2.;
k[2]=k[3]-0.3*(k[3]-k[0])/2.;
q[1]=GetMaxB(I,V,Vb,k[1],dim);
q[2]=GetMaxB(I,V,Vb,k[2],dim);

}

for(i=1,l=0;i<4;i++) if(q[i]<q[l]) l=i;
*zeta=k[l];
return q[l];

}

double IRule(I,V,Vb,ncoils,dim,zeta,out)
double *I,**V,**Vb,*zeta,**out;
int ncoils,dim;

{
int i,j;

for(i=0;i<ncoils;i++)
for(j=0;j<3;j++)

if(i<dim) out[j][i]=I[j*dim+i];
else out[j][i]=0.;

return Rule(out,V,Vb,ncoils,&zeta);
}

int ReadEm(fi,x,y,p,v,vb,Ncoils,Dim)
char *fi;
double ***x,***y,***p,***v,***vb;
int *Ncoils,*Dim;

{

int i,j,k,dim,ncoils,*onflag,errflag=FALSE;
double **Mx,**My,**I,**R,**T,**V,**Vt,**P;
double *an,*e;
double J;
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char st[80];
FILE *fp;

if ((fp=fopen(fi,"rt"))!=NULL)
{

ncoils=0;
while(fgets(st,80,fp)!=NULL)

if (strlen(st)>2) ncoils++;
if (VERB==TRUE) printf("%i coils.\n",ncoils);
fclose(fp);
fp=fopen(fi,"rt");
an=(double *)calloc(ncoils,sizeof(double));
onflag=(int *)calloc(ncoils,sizeof(int));
for(i=0;i<ncoils;i++)
{

fscanf(fp,"%lf",&an[i]);
an[i]*=(Pi/180.);
fscanf(fp,"%i",&onflag[i]);
if (VERB==TRUE)

printf("%f %i\n",an[i],onflag[i]);
}
fclose(fp);

/* sort so that active coils come first */
P=MatrixAlloc(ncoils,ncoils);
for(dim=0,i=0;i<ncoils;i++){

if (onflag[i]==TRUE) dim++;
P[i][i]=1.0;

}
for(i=0;i<ncoils-1;i++)

for(j=0;j<ncoils-1;j++)
{

if (onflag[j+1]>onflag[j])
{

e=P[j];P[j]=P[j+1];P[j+1]=e;
J=an[j];an[j]=an[j+1];an[j+1]=J;
k=onflag[j];onflag[j]=onflag[j+1];
onflag[j+1]=k;

}
}

/* create Mx,My matrices */
R=MatrixAlloc(ncoils,ncoils);
T=MatrixAlloc(ncoils,ncoils);
Mx=MatrixAlloc(ncoils,ncoils);
My=MatrixAlloc(ncoils,ncoils);
V=MatrixAlloc(ncoils,ncoils);
Vt=MatrixAlloc(ncoils,ncoils);

for(i=0;i<(ncoils-1);i++)
{

R[i][i]=1.;
R[i][i+1]=-1.;
T[i][i]=1.;
T[i][i+1]=-1.;
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}
for(i=0;i<ncoils;i++) R[ncoils-1][i]=1.;
Invert(R,ncoils);
Times(R,T,V,ncoils);

for(i=0;i<ncoils;i++)
for(j=0;j<ncoils;j++)
{

if(i!=j)
{

R[i][j]=0.;
T[i][j]=0.;

}
else
{

R[i][i]=cos(an[i])/2.;
T[i][i]=sin(an[i])/2.;

}
Vt[j][i]=V[i][j];

}

/* form Mx matrix */
Times(R,V,My,ncoils);
Times(Vt,My,Mx,ncoils);

/* form My matrix */
Times(T,V,R,ncoils);
Times(Vt,R,My,ncoils);

Invert(P,ncoils);

/* form backiron flux matrix */
for(i=0;i<ncoils;i++)

for(j=0;j<ncoils;j++)
if (i!=ncoils-1) R[i][j]=0.;
else R[i][j]=1.;

for(i=0;i<(ncoils-1);i++)
{

R[i][i]=0.5;
R[i][i+1]=-0.5;

}
Invert(R,ncoils);
for(i=0;i<ncoils;i++)

for(j=0;j<ncoils;j++)
if((i!=j)) Vt[i][j]=0.;
else Vt[i][j]=1.;

Vt[ncoils-1][ncoils-1]=0.;
Times(R,Vt,T,ncoils);
Times(T,P,R,ncoils);
Times(R,V,Vt,ncoils);
/* backiron flux density in Vt */

if (VERB==TRUE)
{

printf("\nMx matrix:\n");
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for(i=0;i<ncoils;i++)
{

for(j=0;j<ncoils;j++)
printf("%f ",Mx[i][j]);

printf("\n");
}

printf("\nMy matrix:\n");
for(i=0;i<ncoils;i++)
{

for(j=0;j<ncoils;j++)
printf("%f ",My[i][j]);

printf("\n");
}

}

/* cleanup */
*x=Mx;
*y=My;
*p=P;
*v=V;
*vb=Vt;
*Ncoils=ncoils;
*Dim=dim;
MatrixFree(R,ncoils);
MatrixFree(T,ncoils);
free(an);

}
else{

fclose(fp);
errflag=TRUE;

}
return errflag;

}

void MakeH(H,s,I,E,S,Mx,My,dim)
double **H,*s,**I,**S,**Mx,**My;
int dim;
struct Entry **E;

{
int i,j,k;

/* make H matrix */
for(i=0;i<12;i++)
{

for(j=0;j<3*dim;j++) s[j]=0.0;
for(j=0;j<3;j++)
{

if(E[i][j].co==TRUE)
{

if(E[i][j].ma==0)
vTimes(Mx,I[E[i][j].ve],S[j],dim);

else
vTimes(My,I[E[i][j].ve],S[j],dim);

}
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}
for(j=0;j<3*dim;j++) H[i][j]=s[j];

}
}

main(argc,argv)
int argc;
char *argv[];

{
int i,j,k,count; /* iterators */
int GradStep,Done;
long steps;
int dim,ncoils,errflag=0;
double u,cost,z,zeta,bestcost,lastcost,dt;
double *Io,*In,*Ip,*s,*cn,*cc,*di,*best;
double **Mx,**My,**P,**V,**Vb,**H,**HHt,**I,**S,**out,**m;
struct Entry **E;
FILE *fp;

/* note --

Mx,My correspond to the M_x,M_y matrices of theory
permuted so that active coils are in the upper left
dim x dim block.

P is the matrix by which Mx and My were permuted,
necessary so that output can be un-permuted for
printout. */

srand((int)time(0));
if (argc!=2) errflag=1;
if (errflag==0)
{

if(ReadEm(argv[1],&Mx,&My,&P,&V,&Vb,&ncoils,&dim)==TRUE)
errflag=2;

}
if (errflag==0)
{

if((fp=fopen("matset.dat","rt"))!=NULL)
{

E=(struct Entry **)calloc(12,sizeof(struct Entry *));
for(i=0;i<12;i++)
{

E[i]=(struct Entry *)calloc(3,
sizeof(struct Entry));

for(j=0;j<3;j++)
{

fscanf(fp,"%i",&E[i][j].co);
fscanf(fp,"%i", &E[i][j].ve);
fscanf(fp,"%i", &E[i][j].ma);

}
}
fclose(fp);

}
else errflag=3;
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}
if (errflag==0)
{

/* Allocate matrices needed */
Io=(double *)calloc(3*dim,sizeof(double));
In=(double *)calloc(3*dim,sizeof(double));
Ip=(double *)calloc(3*dim,sizeof(double));
best=(double *)calloc(3*dim,sizeof(double));
I =(double **)calloc(3,sizeof(double *));
S =(double **)calloc(3,sizeof(double *));
I[0]=In; I[1]=In+dim; I[2]=In+2*dim;
s =(double *)calloc(3*dim,sizeof(double));
S[0]=s; S[1]=s+dim; S[2]=s+2*dim;
H=MatrixAlloc(12,3*dim);
HHt=MatrixAlloc(12,12);
m=MatrixAlloc(3*dim,3*dim);
out=MatrixAlloc(4,ncoils);
cn=(double *)calloc(12,sizeof(double));
cc=(double *)calloc(12,sizeof(double));
di=(double *)calloc(3*dim-12,sizeof(double));
count=0;

do{
/* make an initial random guess */
for(i=0;i<3*dim;i++){

if (count<HOW_MANY) In[i]=Random();
else In[i]=best[i];

}

/* update currents vector */
steps=0;GradStep=FALSE;Done=FALSE;dt=DT;lastcost=pow(10.,10.);
do{

MakeH(H,s,I,E,S,Mx,My,dim);
if(GradStep==TRUE){

/* get a basis for the feasible space */
for(i=0;i<3*dim;i++){

for(j=0;j<3*dim;j++){
if (i<12) m[i][j]=H[i][j];
else m[i][j]=Random();

}
}
Gramm(m,3*dim,3*dim);

/* compute a numerical derivative associated
with each direction of feasible space */

for(i=12,j=0;i<3*dim;i++,j++){
for(k=0;k<3*dim;k++)

Ip[k]=In[k]+Del*m[i][k];
di[j] =IRule(Ip,V,Vb,ncoils,dim,&zeta,out);
for(k=0;k<3*dim;k++)

Ip[k]=In[k]-Del*m[i][k];
di[j]-=IRule(Ip,V,Vb,ncoils,dim,&zeta,out);
di[j]=di[j]/(2.*Del);

}



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 108

/* scale the derivative vector */
for(j=0,zeta=0.;j<3*dim-12;j++)

zeta+=di[j]*di[j];
zeta=sqrt(zeta);
for(j=0;j<3*dim-12;j++)

di[j]=GradStepLength*di[j]/zeta;

/* add gradient step to In */
for(i=12,k=0;i<3*dim;i++,k++)

for(j=0;j<3*dim;j++)
In[j]-=di[k]*m[i][j];

/* Make H matrix for the new In */
MakeH(H,s,I,E,S,Mx,My,dim);
GradStep=FALSE;

}

/* make H . H(transpose) matrix */
for(i=0;i<12;i++)
{

for(j=0;j<12;j++)
{

z=0.;
for(k=0;k<3*dim;k++)

z+=H[i][k]*H[j][k];
HHt[i][j]=z;

}
}
Invert(HHt,12);

/* make RHS */
for(i=0;i<12;i++)
{

cn[i]=0.;
for(j=0;j<3*dim;j++)

cn[i]+=H[i][j]*In[j];
if(i>9) cn[i]-= 1.;

}

vTimes(HHt,cn,cc,12);

/* figure new current */
for(i=0;i<3*dim;i++)
{

Io[i]=In[i];
for(j=0;j<12;j++)

In[i]-=0.5*dt*H[j][i]*cc[j];
}

/* figure how convergence is doing */
z=0;
for(i=0;i<12;i++)
{

cn[i]=0.;
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for(j=0;j<3*dim;j++)
cn[i]+=H[i][j]*In[j];

if(i>9) cn[i]-=1.0;
z+=cn[i]*cn[i];

}
z=sqrt(z);
if (z<pow(10.,-8.)){

if (count!=(HOW_MANY)) Done=TRUE;
else{

cost=IRule(In,V,Vb,ncoils,dim,&zeta,out);
if(VERB==TRUE)

printf("f_max = %f\n",pow(cost,-2.));
GradStep=TRUE;
dt=1.;
if (cost>lastcost) Done=TRUE;
lastcost=cost;
steps=0;

}
}
if (VERB==TRUE) printf("convergence %e\n",z);
steps++;

} while((Done==FALSE) && (steps<MAXSTEPS));

if (steps<MAXSTEPS)
{

for(i=0;i<ncoils;i++)
for(j=0;j<3;j++)

if(i<dim) out[j][i]=I[j][i];
else out[j][i]=0.;

cost=Rule(out,V,Vb,ncoils,&zeta);
if ((cost<bestcost) || (count==0))
{

for(i=0;i<3*dim;i++)
best[i]=In[i];

bestcost=cost;
printf("%i f_max = %f\n",count,

pow(bestcost,-2.));
}

}
else count--;

}while(HOW_MANY>count++);

cost=Rule(out,V,Vb,ncoils,&zeta);
printf("\nf_max = %f\n",pow(cost,-2.));
for(i=0;i<3;i++){

vTimes(P,out[i],out[3],ncoils);
Cp(out[i],out[3],ncoils);

}

printf("{");
for(i=0;i<ncoils;i++){
/* output is scaled so that the best \hat{i}_o is 1

and saturation occurs at f=f_max */
printf("{%f, %f, %f}",
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out[0][i]*zeta/cost,cost*out[1][i]/zeta,
cost*out[2][i]/zeta);

if (i<(ncoils-1)) printf(",\n");
}
printf("}\n");

}

/* catch any errors */
if (errflag==1){

printf("%s - finds control currents for a magnetic\n",argv[0]);
printf(" bearing specified in a given datafile:\n\n");
printf("%s [datafile]\n",argv[0]);

}
if (errflag==2) printf("File Not Found.\n");
if (errflag==3) printf("Data file \"matset.dat\" not found.\n");

}
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A.2.2 Mathematics library mathstuf.c

This library contains various subroutines that facilitate the creation of and operation on matrices in C.

#define Pi 3.141592653589793
#define TRUE 1
#define FALSE 0

void MatrixFree();
void Times();
void vTimes();
double Dot();
void TransposeTimes();
char Solve();
char Invert();
double **MatrixAlloc();
double Random();
void MatrixClear();
void PlusMat();
void CpMat();
void Cp();
void Plus();
void Scale();

double Random()
{

/* returns a random number between -1 and 1 */

double x;
x=(double)rand();
return (2.*x/((double) RAND_MAX) - 1.);

}

void MatrixFree(M,n)
double **M;
int n;

{
/* frees up a matrix allocated with MatrixAlloc */
int i;

for(i=0;i<n;i++) free(M[i]);
free(M);

}

void MatrixClear(M,n)
double **M;
int n;

{
/* fills up a square matrix with zeros in every entry */
int i,j;

for(i=0;i<n;i++)
for(j=0;j<n;j++)

M[i][j]=0.;
}
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void Times(a,b,c,n)
double **a,**b,**c;
int n;

{
/* multiplies together 2 square matrices a and b, puts result in c */
int i,j,k;

for(i=0;i<n;i++)
for(j=0;j<n;j++)
{

c[i][j]=0.;
for(k=0;k<n;k++) c[i][j]+=a[i][k]*b[k][j];

}
}

void PlusMat(out,in,scalar,n)
double **out,**in;
double scalar;
int n;

{
/* adds matrix ‘‘in’’ times the scalar ‘‘scalar’’ to the matrix

‘‘out’’. The result is returned in ‘‘out’’ */
int i,j;

for(i=0;i<n;i++)
for (j=0;j<n;j++)

out[i][j]=out[i][j]+scalar*in[i][j];
}

void CpMat(out,in,n)
double **out,**in;
int n;

{
/* copies square matrix in ‘‘in’’ into ‘‘out’’ */
int i,j;

for(i=0;i<n;i++)
for (j=0;j<n;j++)

out[i][j]=in[i][j];
}

double Dot(b,c,dim)
double *b,*c;
int dim;

{
/* returns the dot product of vectors b and c */

int i;
double res=0.;

for(i=0;i<dim;i++) res+=b[i]*c[i];
return res;

}

void Cp(b,c,dim)
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double *b,*c;
int dim;

{
/* copies entries from b into c */

int i;

for(i=0;i<dim;i++) b[i]=c[i];
}

void Plus(z,b,c,dim)
double *b,*c, *z;
int dim;

{
/* adds vectors b and c, puts the result in z */

int i;

for(i=0;i<dim;i++) z[i]=b[i]+c[i];
}

void Scale(z,s,dim)
double *z,s;
int dim;

{
/* scales every entry in z by the constant s */

int i;

for(i=0;i<dim;i++) z[i]=s*z[i];
}

void vTimes(M,x,b,dim)
double **M,*x,*b;
int dim;

{
/* multiplies vector x times square matrix M. Result in b */

int i,j;

for(i=0;i<dim;i++)
{

b[i]=0;
for(j=0;j<dim;j++) b[i]+=(M[i][j] * x[j]);

}
}

void TransposeTimes(a,b,c,n)
double **a,**b,**c;
int n;

{
/* multiplies Transpose[a] and b, puts the result in c */
int i,j,k;
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for(i=0;i<n;i++)
for(j=0;j<n;j++)
{

c[i][j]=0.;
for(k=0;k<n;k++) c[i][j]+=a[k][i]*b[k][j];

}
}

double **MatrixAlloc(rows,cols)
int rows,cols;

{
/* allocates a matrix with dimensions specified by rows and cols */

double **matrix;
int i;

matrix=(double **)calloc(rows,sizeof(matrix));
if (matrix==NULL) return NULL;
for(i=0;i<rows;i++){

matrix[i]=(double *)calloc(cols,sizeof(double));
if (matrix[i]==NULL) return NULL;

}
return matrix;

}

char Solve(m,b,dim)
double **m,*b;
int dim;

{
/* solves the linear system m x = b for x. The result is returned

in b, m is destroyed in the process */

int i,j,k;
double *z;
double max,f;
int n;

for(i=0;i<dim;i++)
{

for(j=i,max=0;j<dim;j++)
if (fabs(m[j][i])>fabs(max))
{

max=m[j][i];
n=j;

}
if(max==0) return FALSE;
z=m[i];m[i]=m[n];m[n]=z;
f=b[i];b[i]=b[n];b[n]=f;
for(j=i+1;j<dim;j++)
{

f=m[j][i]/m[i][i];
b[j]=b[j]-f*b[i];
for (k=i;k<dim;k++)

m[j][k]-=(f*m[i][k]);
}
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}
for(i=dim-1;i>=0;i--)
{

for(j=dim-1,f=0;j>i;j--)
f+=m[i][j]*b[j];

b[i]=(b[i]-f)/m[i][i];
}
return TRUE;

}

char Invert(double **m, int dim)
{

/* replaces square matrix m with its inverse */
int i,j,k;
double **x;
double *z;
double max,f;
int n;

x=MatrixAlloc(dim,2*dim);
for(i=0;i<dim;i++)
{

for(j=0;j<dim;j++) x[i][j]=m[i][j];
x[i][dim+i]=1.0;

}

for(i=0;i<dim;i++)
{

for(j=i,n=i,max=0;j<dim;j++)
if (fabs(x[j][i])>fabs(max))
{

max=x[j][i];
n=j;

}
if(max==0) return TRUE;
z=x[i];x[i]=x[n];x[n]=z;
for(j=i;j<2*dim;j++) x[i][j]=x[i][j]/max;
for(j=0;j<dim;j++)
{

if (j!=i)
{

f=x[j][i];
for (k=i;k<2*dim;k++)

x[j][k]=x[j][k]-f*x[i][k];
}

}
}
for(i=0;i<dim;i++) for(j=0;j<dim;j++) m[i][j]=x[i][dim+j];
MatrixFree(x,dim);
return FALSE;

}

int Gramm(m,row,col)
double **m;
int row, col;



APPENDIX A. SYMMETRIC 8-POLE MAGNETIC BEARING 116

{
/* does a Gramm-Schmidt orthonormalization of the rows of m */

int i,j,k;
int flag=FALSE;
double x;

for(k=0;k<row;k++){
for(j=0,x=0.;j<col;j++) x+=(m[k][j]*m[k][j]);
x=sqrt(x);
for(j=0;j<col;j++) m[k][j]=m[k][j]/x;

for(i=0;i<k;i++){
for(j=0,x=0.;j<col;j++) x+=m[k][j]*m[i][j];
for(j=0;j<col;j++) m[k][j]-=(x*m[i][j]);

}

for(j=0,x=0.;j<col;j++) x+=(m[k][j]*m[k][j]);
x=sqrt(x);

if(x<pow(10.,-12)){
flag=TRUE;
for(j=0;j<col;j++) m[k][j]=0.;

}
else for(j=0;j<col;j++) m[k][j]=m[k][j]/x;

}
return flag;

}
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A.2.3 Sample bearing data filebrg.dat

This file specifies the location of each pole and which poles are active. The first column corresponds to the
angle of the center of each pole as measured in degrees from the “X” axis as defined in FigureA.1. The
second column denotes which coils have active poles. A “1” denotes that the coil on the corresponding pole
is active, and a “0” that the coil is inactive. This particular data file corresponds to Case 11.

22.5 0
67.5 1
112.5 0
157.5 1
202.5 1
247.5 0
292.5 1
337.5 1
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A.2.4 Data file matset.datneeded byfindw.c

This file contains information thatfindw needs to build theH matrix defined in eq. (6.19). This file should
not be modified.

1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 2 0
0 0 0 0 0 0 1 2 1
0 0 0 1 2 0 1 1 0
0 0 0 1 2 1 1 1 1
1 2 0 0 0 0 1 0 0
1 1 1 1 0 1 0 0 0
1 2 1 0 0 0 1 0 1
1 1 0 1 0 0 0 0 0
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A.2.5 Sample run offindw.c

As a demonstration, the program was run using the previously presented filebrg.dat as its input. Each time
the program finds a new best solution, it reports the iteration number, and thefmax produced by that solution.
In this case, 1000 feasible solutions were found starting from random seeds. In the 1000th iteration, the best
feasible solution is improved through the application of the reduced gradient method. When further gradient
steps yield no improvement, the best solution is reported in a form that can be conveniently imported into
Mathematica.

This particular execution was run through thetime command so that the time taken to run the
program was reported at the end of the run. This run took about 41

2 minutes of time on an IBM RS6000. A
listing of the run follows.

romac2: /home/dcm3c/diss $ time findw brg.dat
0 f_max = 0.078109
1 f_max = 0.090939
6 f_max = 0.164693
24 f_max = 0.183287
33 f_max = 0.213848
36 f_max = 0.228720
49 f_max = 0.232852
230 f_max = 0.238559
274 f_max = 0.263614
812 f_max = 0.276421
1000 f_max = 0.290706

f_max = 0.290706
{{0.000000, 0.000000, 0.000000},
{-0.642233, -0.019391, -1.541162},
{0.000000, 0.000000, 0.000000},
{-0.530964, 2.098009, -1.183733},
{0.078041, -0.261275, -1.308100},
{0.000000, 0.000000, 0.000000},
{-0.653558, 0.598380, 0.436182},
{-0.055513, 2.256527, -0.862093}}

real 5m11.89s
user 4m36.06s
sys 0m0.07s
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A.3 Mathematicaprogram for solution of direct optimization problem

This program finds the solution to the direct optimization problem for the specific case of a non-dimensionalized
8-pole radial bearing with all coils active. Variablesm1andm2contain matricesMx andMy respectively. The
specificio to be used in the solution is specified by the variableio .

After theM matrices andio are defined, the program integrates the system of differential equations
(7.6) at 40 different angles spaced evenly between 0 and 2π. An Euler integration is performed fromf = 0 to
f = 1 with a step size of 0.02.

The currents required for coil “1” are stored as an array of points contained indata . After all
integrations are done, the information indata is used to form a graphical representation of the solution
surface. The graphics primitives that define the surface are contained in the variableli . The last statement
of the program plots the resulting surface with the appropriate labeling.

Rr={{1,-1,0,0,0,0,0,0},
{0,1,-1,0,0,0,0,0},
{0,0,1,-1,0,0,0,0},
{0,0,0,1,-1,0,0,0},
{0,0,0,0,1,-1,0,0},
{0,0,0,0,0,1,-1,0},
{0,0,0,0,0,0,1,-1},
{1,1,1,1,1,1,1,1}};

Nn={{1,-1,0,0,0,0,0,0},
{0,1,-1,0,0,0,0,0},
{0,0,1,-1,0,0,0,0},
{0,0,0,1,-1,0,0,0},
{0,0,0,0,1,-1,0,0},
{0,0,0,0,0,1,-1,0},
{0,0,0,0,0,0,1,-1},
{0,0,0,0,0,0,0,0}};

V=Inverse[Rr] . Nn;
m1=Chop[N[Transpose[V].DiagonalMatrix[

(1/2)*Table[Cos[Pi(n/4 + 1/8)],{n,0,7}]].V]];
m2=Chop[N[Transpose[V].DiagonalMatrix[

(1/2)*Table[Sin[Pi(n/4 + 1/8)],{n,0,7}]].V]];
io=0.25*{1.,-1.,1.,-1.,1.,-1.,1.,-1.};
d=8;

data=Table[,{41}];
co=0;
For[t=0,N[t]<=N[2 Pi],t+=Pi/20,

ds=1/50;
q=Table[,{1/ds+1}];k=0;
x=io; z1=0.; z2=0.;
For[j=0,j<=1,j+=ds,

A=IdentityMatrix[d]+2(z1 m1 + z2 m2);
Ap=2*{m1 . x,m2 . x};
A=Transpose[Join[A,Ap]];
Ap[[1]]=Join[Ap[[1]],{0,0}];
Ap[[2]]=Join[Ap[[2]],{0,0}];
A=Join[A,Ap];
b=Join[Table[0,{d}],{N[Cos[t]],N[Sin[t]]}];
ans=Inverse[A].b;
k++;
(* q[[k]]=Join[{N[j]},x,{z1,z2}]; *)
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q[[k]]={N[j Cos[t]],N[j Sin[t]],x[[1]]};
x+=(N[ds]*ans[[Range[1,d]]]);
z1+=(N[ds]*ans[[d+1]]);
z2+=(N[ds]*ans[[d+2]])

];
co++;
data[[co]]=q;
Print[N[t]]

]

li=Table[,{40*50}];k=0;
For[i=1,i<41,i++,

For[j=1,j<51,j++,
k++;
li[[k]]=Polygon[{data[[i,j]],data[[i+1,j]],

data[[i+1,j+1]],data[[i,j+1]]}]
];
Print[i];

]

Show[Graphics3D[{EdgeForm[{Thickness[0.001]}],li}],
FaceGrids->{{0,0,-1},{1,0,0},{0,1,0}},
AxesLabel->{f1,f2,i1},BoxRatios->{1,1,1},Axes->True,
ViewPoint->{-1,-6,0.2},Lighting->True,AxesEdge->{{-1,-1},
Automatic,Automatic}]
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A.4 C code for saturating 8-pole bearing

This C code is for the specific case of an 8-pole nondimensionalized radial magnetic bearing subject to satu-
ration. All parameters are hard-coded into the source so no external data file is necessary. These parameters
are:

ThetaDivs Defines the number of angles at which the system of equations specified by (9.25) will be inte-
grated.

MaxForce Denotes the limit of integration to which the force will be integrated.

ForceDivs Specifies the size of each step in the integration by specifying the number of steps between 0 and
MaxForce .

BiasLevel scales the vectorio = {1,1,1,1,1,1,1,1}T so that solutions can be found for various bias levels.

The output of this program is a set ofMathematicagraphics primitives that can be plotted to produce
a portrait of the required currents analogous to the plot created by the previousMathematicaprogram.

The algorithm employed by this program is explained in detail in §9.4. Specific subroutines used
in the program are

MakeA Forms the matrix on the left-hand side of (9.25).

EvalF Evaluates the Kuhn-Tucker conditions. This evaluation is used to take Newton-Raphson steps to make
sure that the Kuhn-Tucker conditions are satisfied.

#include<stdio.h>
#include<stdlib.h>
#include<math.h>

#define ThetaDivs 40
#define MaxForce 1.00
#define ForceDivs 50
#define BiasLevel 0.25

#include"mathstuf.c"

void MakeA(A,s,t,M1,M2,Ca,x,a)
double **A,s,t,**M1,**M2,**Ca,*x;
int a;

{
int i,j,k,p,q;
double c;

MatrixClear(A,16);

for(p=0;p<8;p++){
for(q=0;q<8;q++){

if (p==q) c=1.; else c=0.;
A[p][q]=2*(c + x[8]*M1[p][q]

+ x[9]*M2[p][q]);
A[8][p]+=2*M1[p][q]*x[q];
A[9][p]+=2*M2[p][q]*x[q];

}
A[p][8]=A[8][p]; A[p][9]=A[9][p];

}
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for(i=0,k=10;i<a;i++,k++)
for(j=0;j<8;j++){

A[k][j]=Ca[i][j];
A[j][k]=Ca[i][j];

}
}

void EvalF(b,s,t,x,M1,M2,Ca,na,io)
double *b,s,t,*x,**M1,**M2,**Ca,*io;
int na;

/* puts evaluated K-T conditions into b */
{

int i,j,k;
double f1,f2;

for(k=0;k<16;k++) b[k]=0.;

for(i=0;i<8;i++) b[i]=2.*(x[i] - BiasLevel*io[i]);

for(f1=0.,f2=0.,i=0;i<8;i++){
for(j=0;j<8;j++){

f1+=x[i]*M1[i][j]*x[j];
f2+=x[i]*M2[i][j]*x[j];
b[i]+=2.*(x[8]*M1[i][j]*x[j] + x[9]*M2[i][j]*x[j]);

}
}

for(i=0;i<8;i++)
for(j=0;j<na;j++)

b[i]+=(Ca[j][i]*x[10+j]);

for(i=0;i<na;i++){
for(j=0,b[10+i]=0.;j<8;j++) b[10+i]+=Ca[i][j]*x[j];
b[10+i]-=1.;

}

b[8]=f1-s*cos(t); b[9]=f2-s*sin(t);
}

main()
{

int i,j,k,p,q,flag;
int na,np,nc;
double **A,**V,**Ca,**Cp,**G,**H,**M1,**M2,**R,**N,**Q,**d;
double io[8]={1.,-1.,1.,-1.,1.,-1.,1.,-1.};
double t,s,dt,ds,c,maxb,x[16],b[16];

A =MatrixAlloc(16,16);
V =MatrixAlloc(8,8);
R =MatrixAlloc(8,8);
N =MatrixAlloc(8,8);
M1=MatrixAlloc(8,8);
M2=MatrixAlloc(8,8);
Q =MatrixAlloc(8,8);
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G =MatrixAlloc(2,8);
H =MatrixAlloc(6,8);

Cp=MatrixAlloc(16,8);
Ca=(double **)calloc(16,sizeof(double *));
np=16; na=0; nc=16;

for(i=0;i<7;i++){
R[i][i]=1.; R[i][i+1]=-1.;
N[i][i]=1.; N[i][i+1]=-1.;

}
for(i=0;i<8;i++){

R[7][i]=1.;
M1[i][i]=0.5*cos(Pi*(((double) i)/4. + 0.125));
M2[i][i]=0.5*sin(Pi*(((double) i)/4. + 0.125));

}

Invert(R,8);
Times(R,N,V,8);
Times(M1,V,Q,8);
TransposeTimes(Q,V,M1,8);
Times(M2,V,Q,8);
TransposeTimes(Q,V,M2,8);

for(i=0;i<8;i++)
for(j=0;j<8;j++){

Cp[i][j] =V[i][j];
Cp[8+i][j]=-V[i][j];

}

dt=2.*Pi/((double) ThetaDivs);
ds=MaxForce/((double) ForceDivs);
d=MatrixAlloc(ThetaDivs+1,ForceDivs+1);

for(i=0,t=0.;i<=ThetaDivs;i++,t+=dt){

for(j=0;j<16;j++){
if(j<8){

x[j]=BiasLevel*io[j];
}
else x[j]=0.;

}

for(j=0;j<na;j++){
Cp[np]=Ca[j];
np++;

}
na=0;

for(j=0,s=0.;j<ForceDivs;j++,s+=ds){
d[i][j]=x[0];

/* make b for prediction step */
for(k=0;k<16;k++) b[k]=0.;
b[8]=cos(t); b[9]=sin(t);
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/* compute prediction step */
MakeA(A,s,t,M1,M2,Ca,x,na);
Solve(A,b,10+na);
for(k=0;k<16;k++) x[k]+=ds*b[k];

/* do newton cleanup step */
MakeA(A,s,t,M1,M2,Ca,x,na);
EvalF(b,s,t,x,M1,M2,Ca,na,io);
Solve(A,b,10+na);
for(p=0;p<10+na;p++)

x[p]=x[p]-b[p];

/* check for constraint violation */
flag=FALSE;
for(p=0;p<np;p++){

for(k=0,c=0.;k<8;k++) c+=Cp[p][k]*x[k];
if (c>=1.){

flag=TRUE;
/* printf("*"); */

Ca[na]=Cp[p];
x[10+na]=0.;
na++; np--;
for(k=p;k<np;k++) Cp[k]=Cp[k+1];

}
}

/* if new constraints have been imposed,
clean up with a newton step to meet constraint
exactly. */

if(flag==TRUE){
MakeA(A,s,t,M1,M2,Ca,x,na);
EvalF(b,s,t,x,M1,M2,Ca,na,io);
Solve(A,b,10+na);
for(p=0;p<10+na;p++)

x[p]=x[p]-b[p];
}

}
d[i][j]=x[0];

}

printf("li={");
for(i=0,t=0;i<ThetaDivs;i++,t+=dt){

for(j=0,s=0;j<ForceDivs;j++,s+=ds){
printf(
"Polygon[{{%f,%f,%f},{%f,%f,%f},{%f,%f,%f},{%f,%f,%f}}]",

s*cos(t),s*sin(t),d[i][j],
s*cos(t+dt),s*sin(t+dt),d[i+1][j],
(s+ds)*cos(t+dt),(s+ds)*sin(t+dt),d[i+1][j+1],
(s+ds)*cos(t),(s+ds)*sin(t),d[i][j+1]);

if((i==ThetaDivs-1) && (j==ForceDivs-1)) printf("}\n");
else printf(",\n");

}
}
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}



Appendix B

Slew rate limiting.

B.1 Bounds on current slew rate.

In this dissertation, it is assumed that any requested set of currents is realized virtually instantaneously.
However, some type of amplifier, in conjunction with a very fast feedback loop, is actually used to obtain
the requested currents in a short but not infinitesimal time. Practical limitations of magnetic bearings are
addressed in detail in [MHSH89]. The goal of this appendix is to provide a brief synopsis of the limitations
due to amplifiers so that control currents can be chosen in a way so that nominal bearing performance is not
affected.

The amplifier realizes the requested currents by controlling the voltage drop across each coil. The
current flowing in each coil is sensed and used by the amplifier control scheme to choose voltages that drive
the coil currents to the desired values.

Two types of amplifier are generally used in magnetic bearing applications: linear and switching
amplifiers. Linear amplifiers can create a voltage anywhere between two extreme voltages,vo and−vo.
Switching amplifiers, however, alternate only between the two extreme voltages and spend almost no time at
intermediate voltages. Switching amplifiers are used predominantly due to their low cost and high efficiency
as compared to linear amplifiers.

Regardless of amplifier type, the finite maximum amplifier voltage limits the currents in the coils to
a finite time rate of change. The rate of current change in a coil is known as “slew rate.” For any bearing, the
electrical circuit equations are:

L
di
dt

+ Ri = v (B.1)

whereL is the inductance matrix for the bearing as defined in (3.7), R is a diagonal matrix of coil resistances,
andv is a vector of amplifier voltages. Typically, the resistance of the coils is small in comparison to the
impedance due to the coils’ inductance; it is then appropriate to approximate:

L
di
dt

= v (B.2)

It is useful to derive one number as a limiting slew rate. In the case of a single horseshoe bearing,
the limiting slew rate is trivial to compute. In this case,i, L, andv are all scalars; by inspection of (B.1), the
largest possible slew rate magnitude is

di
dt max

=
vo

L
(B.3)

For a system with cross-coupling terms in the inductance matrix (such as occurs with an 8-pole radial bearing
with all coils driven independently), a similar value can be derived.

127
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Taking the 2-norm of each side of (B.1) yields∥∥∥∥L
di
dt

∥∥∥∥
2

= ‖v‖2

σ̄[L]
∥∥∥∥di

dt

∥∥∥∥
2

≥ ‖v‖2∥∥∥∥di
dt

∥∥∥∥
2

≥ ‖v‖2

σ̄[L]

It can be noted that‖v‖∞ ≤ ‖v‖2: ∥∥∥∥di
dt

∥∥∥∥
2
≥ ‖v‖∞

σ̄[L]

For the limiting case,‖v‖∞ = vo. ∥∥∥∥di
dt

∥∥∥∥
2
≥ vo

σ̄[L]

A sufficient condition for a requested slew rate to be realizable is then∥∥∥∥di
dt

∥∥∥∥
2
≤ vo

σ̄[L]
(B.4)

Slew rate limitingis the condition where the requested slew rate is greater than can be realized. One
scenario in which this problem can occur is at low force levels. Consider

f j = i′Mj i ; j = 1, . . .k

The derivative of force with respect to time is

d f
dt

= 2i′Mj
di
dt

(B.5)

If zero force is realized byi = 0, d f/dt = 0 regardless ofdi/dt. An infinite current slew rate is required to
get a finited f/dt, and slew rate limiting is inevitable. Slew rate limiting can be avoided at low force levels by
requiring non-zero currents at zero force such that(B.5) is a set ofk independent linear equations indi/dt.

Another potential cause of slew rate limiting is a discontinuous inverse mapping. Any discontinuities
in i(t) require an infinitedi/dt. This problem is avoided by requiring an inverse mapping that is continuous
and has finite gradients everywhere.

Another, and more serious, cause of slew rate limiting can arise due to mis-specification of the
amplifier switching voltage. If the switching voltage is not high enough, requesteddi/dt can be outside of
the range of realizable values during normal operation. Perhaps the only remedy for this type of slew rate
limiting is a change to amplifiers with higher switching voltages.

B.2 Decoupling of electrical circuits in a radial magnetic bearing

In a typical magnetic bearing wound in a horseshoe configuration, the requested currents are realized by
a switching amplifier controlled by a fast feedback loop. With horseshoe windings, each pair of coils is
magnetically isolated from all other coils; current in horseshoe’s winding produces flux only in the legs
associated with that horseshoe. This configuration is illustrated in FigureB.1.

However, the same is not the case for a bearing with an independently wound coil on each leg. A
current applied to one leg causes flux in all legs of the bearing. Moreover, the inductance matrixL is singular
due to conservation of flux constraints; the current vectori = {1, . . . ,1} produces no flux and is therefore
associated with a zero inductance. This current vector associated with no flux can create problems if the usual
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Figure B.1: Flux induced by a horseshoe winding

switching algorithm for realizing currents in horseshoes is naively applied to a bearing with independently
wound coils.

For a bearing wound in a horseshoe scheme, the electric circuit equation for an individual horseshoe
is

l
di
dt

+ ri = v (B.6)

The applied voltage,v, is supplied by a switching amplifier and can take on the value of eithervo or−vo. The
control law that realizes a desired current can be idealized as

v = vo ; i < id
v =−vo ; i > id

(B.7)

whereid is the desired current. This system is known to give good tracking performance as long as|id|< vo
r

and|did
dt |< vo

l (restrictions on the achievable magnitude and slew rate ofi).
Consider the use of the same switching algorithm on a 4-pole bearing with independently wound

coils. The electric circuit equations are:

L
di
dt

+ ri = v (B.8)

where

L =
(

N2aµo

go

)
3
4 − 1

4 − 1
4 − 1

4
− 1

4
3
4 − 1

4 − 1
4

− 1
4 − 1

4
3
4 − 1

4
− 1

4 − 1
4 − 1

4
3
4


 (B.9)

Inductance matrixL is singular; its eigenvalues are(N2aµo
go

){1,1,1,0}. SinceL is singular, there are only 3
states to the system, even though there are four currents and four inputs. Writing this system in standard form
via a singular value decomposition yields:

dx
dt

=−
(

gor
N2aµo

)
x+
(

gor
N2aµo

)
1√
2

0 − 1√
2

0

0 1√
2

0 − 1√
2

1
2 − 1

2
1
2 − 1

2


v (B.10)
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i =




1√
2

0 1
2

0 1√
2

− 1
2

− 1√
2

0 1
2

0 − 1√
2

− 1
2


 x +

(
1
4r

)
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 v (B.11)

Any component ofv along{1,1,1,1} is fed instantaneously intoi, creating a large magnitude step in coil
currents. Since half of the possible switching states have a component along{1,1,1,1}, exciting the zero-
inductance vector is unavoidable with switching amplifiers.

In the failed coil case,L is no longer singular and no part ofv feeds directly intoi, but a similar
problem remains. For the four-pole bearing, for example, the eigenvalues ofL in the one-coil failed case are
{1,1, 1

4}. One eigenvalue is much smaller than the others, implying that one vector of currents changes nearly
instantaneously. Though all desired currents may be realizable, excessive chatter will result by exciting the
low-inductance current vector.

One solution to these problems is to add extra inductance to the electrical circuit equations associated
only with the component ofi along the null space ofL. The result is that the electrical circuit equations
associated with each coil again become decoupled; the same current control scheme used for horseshoes can
then be used for the independent coil actuator. To achieve this decoupling, each bearing coil is also attached
in series to windings around a laminated slotted ring. Each electric circuit has the same number of turns
wound in the same direction around the ring; therefore, flux is only induced in the ring ifi has a component
along{1,1, . . . ,1}. Schematically, the arrangement is illustrated in FigureB.2. If the ring is designed so that
the self-inductance of the ring for each electric circuit,l p, has a value of

l p =
1
n

(
aµoN2

go

)
(B.12)

the negative off-diagonal mutual inductances inL from the bearing are exactly canceled out by the positive
mutual inductances from the ring. The electric circuit equations become:(

aµoN2

go

)
di
dt

+ ri = v (B.13)

Although the inductance matrix has been changed with respect to the electric circuit, the bearing still has all
of the coupled magnetic properties that allow low power loss performance and fault-tolerance.

Since the ring only adds inductance along the null vector ofL, adding this extra ring does not
adversely influence the slew rate limiting properties of the bearing. In addition, withl p included in the
electrical circuit, the slew rate limiting characteristics of the bearing become much easier to assess. In this
case, the change in the desired current must obey

‖di
dt
‖∞ ≤ vogo

aµoN2 (B.14)

Note that since each coil is decoupled, this condition is not only sufficient for the avoidance of slew rate
limiting but, unlike (B.4), also necessary.

B.2.1 Design of the decoupling ring

To mask the effects of eddy currents, the ring should should have an air gap in the magnetic circuit. In a
laminated ring without an air gap, eddy currents can cause a large deviation from the desired inductance at
relatively low frequencies [Sto74]. If an air gap is included in the ring, nearly all of the reluctance of the
magnetic circuit is due to the air gap; changes in the effective reluctance of the iron sections due to eddy
currents can be neglected.
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Figure B.2: Circuits includingl p to cancel mutual inductance.

The dimensions to be chosen for the ring are thengp, the air gap in the ring;ap, the cross-sectional
area of the ring; andNp, the number of turns from each electric circuit wound around the ring. The first
constraint on the choice of these parameters is that (B.12) must be satisfied:

1
n

(
aµoN2

go

)
=

(
apµoN2

p

gp

)
(B.15)

If the bearing is only meant to be used in the all-coils-active case, very little flux is expected to be induced
in the ring. In this case, the desired currents are generally orthogonal to the null space ofL, because currents
along this vector produce no force. The only flux produced in the ring is due to switching noise, of low
magnitude, and transient in nature. The design parameters can then be chosen solely to minimize the size of
the ring while satisfying (B.15). If the bearing is meant to be used in failure configurations as well, additional
constraints on the choice of ring dimensions arise. In many failure cases, it is often not possible to have a
desired set of currents that produce no flux in the ring. The ring must be sized so that the failure configuration
currents do not saturate the ring and cause a premature loss of load capacity.

The flux density in the ring is easily show to be:(
Npµo

gp

)
{1, . . . ,1} i (B.16)
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This expression can be non-dimensionalized using (A.1)-(A.4):

bring =
(

Np

N

)(
go

gp

)
{1, . . . ,1} i (B.17)

For the worst-case orientation for each failure configuration, the ring should not saturate. The worst case is
characterized by

imax = max
W

max
θ
{1, . . . ,1}W




1
f

max
sinθ

f
max

cosθ


 (B.18)

Then, the worst-case flux density is

bring =
(

Np

N

)(
go

gp

)
imax (B.19)

At this worst case,bring should be 1, denoting that the ring is bordering upon saturation. Substitutingbring = 1
into (B.19) gives a second design constraint:(

gp

go

)
=
(

Np

N

)
imax (B.20)

If gp is to be the arbitrarily chosen parameter, (B.15) and (B.20) can be solved forNp andap in terms ofgp:

Np =
N

imax

(
gp

go

)
(B.21)

ap =
ai2max

n

(
go

gp

)
(B.22)

For the 8-pole symmetric bearing using the failure currents described in AppendixA, imax= 7.7. It is inter-
esting to note that this current level occurs on the one-coil-failed case. If this case is neglected, the worst case
is imax= 4.4. For the one-pole failure case, it may be better to use the numerically determined current set:

W =




0.000000 0.000000 0.000000
−0.392383 −0.643138 −0.801866
0.284591 −0.317674 0.766932
−0.392383 1.021772 −0.112238
0.000000 0.000000 0.000000
0.392383 −0.643138 −0.801866
−0.284591 −0.317674 0.766932
0.392383 1.021772 −0.112238




The load capacity is reduced tof
max

= 0.554178 for a half back iron bearing, but this particular solution has
no component along the{1, . . . ,1} vector and therefore produces no flux in the ring.

An alternative approach to the ring design is to pick a ring geometry before linearizing currents are
determined. Equation (B.19) would then be incorporated into the equationb=Vsi used to determine the peak
flux density in the bearing for purposes of rating bearing load capacity. Flux density in the ring is treated just
like flux density in an section of the stator. Currents are chosen such that flux density in the ring is taken into
account when selecting a best linearizing current set.

Once an appropriategp, ap andNp are selected, the ring still must be designed mechanically. One
possible approach is pictured in FigureB.3. The ring is split into two “L”-shaped parts. Coils would be
wound on spools and slid onto L’s during assembly. The L’s would then be separated by non-magnetic shims
of thicknessgp/2.
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Figure B.3: Schematic of decoupling ring.


