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Abstract: Previously, thin plate assumptions have been
used to obtain a one-dimensional eddy current model for pre-
dicting the stationary, transformer-type losses in magnetic
bearings built out of laminated material. Using similar as-
sumptions as in the 1-D eddy current model, rotating losses
can be predicted for a laminated heteropolar radial magnetic
bearing. The thin plate model of rotating losses yields a hy-
brid analytical-boundary element model that is computation-
ally inexpensive to implement. Predictions from this model
compare favorably to losses experimentally measured in ro-
tor run-down tests.

1 Introduction

Classically, eddy currents in laminated transformer cores have
been treated with the model presented by Stoll [1]. To sim-
plify the eddy current problem, this model idealizes the eddy
current problem as “locally one-dimensional because the pen-
etration distance is small compared to the other [lamination]
dimensions.” With this assumption, the eddy current problem
is reduced to a one-dimensional diffusion equation that can be
solved analytically.

The 1-D eddy current model has been applied with success
to transformer cores, magnetic bearings [2] [3] and magnetic
shielding [4]. In all of these cases, however, eddy currents
are induced by variation of the applied magnetic field in time,
rather than by motion.

Because of the simplicity of the 1-D model, it is tempting to
try a similar approach to modeling eddy currents generated by
motion in laminated magnetic bearing rotors. It has been sug-
gested that the classical eddy current loss equations derived
for stationary transformers might be applied directly to rotat-
ing losses with an “effective frequency” and “effective vol-
ume” based on rotor dimensions and speed [5]. However, the
choice of effective frequency and volume is somewhat heuris-
tic.

The goal of the present work is to model the rotational
eddy current losses in heteropolar radial magnetic bearings
in a consistent fashion that does not require the choice of
an effective frequency and volume. To simplify the formu-
lation, the laminated structure of the journal is exploited. Us-
ing a thin plate approach similar to the 1-D model applied
to transformer-type losses, a simplified model is derived that
gives an analytical solution for flux density inside the journal
in terms of the magnetic scalar potential at the journal surface.

By combining the analytical model inside the rotor with a
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Figure 1: “Unrolled” heteropolar bearing.

boundary element model of the magnetic field in the air be-
tween the pole tips and the rotor surface, the scalar potential at
the rotor surface can be determined, and therefore the field in-
side the rotor, for any configuration of coil currents. The rotat-
ing losses are then found by summing the loss associated with
each Fourier component of the field at the rotor surface, simi-
lar to the qualitative approach in [6]. The validity of the model
is assessed by comparing the predicted power losses to losses
derived from experimental run-down tests. Predicted losses
show a good agreement to experimentally derived losses.

2 Model Development

In this work, it is assumed that the rotor is composed of a
linear material obeying the steady-state Maxwell’s equations:

∇×H = J (1)

∇ ·B = 0 (2)

∇×E = ∇×V×B (3)

and the linear constitutive laws:

B = µH (4)

J = σE (5)

From the analysis of transformer losses including hystere-
sis in [1], electrical losses including hysteresis are only be
slightly higher than losses without hysteresis at high excita-
tion frequencies. It is reasonable to expect that the same is
true at high rotor speeds. For simplicity, hysteresis effects are
neglected in the present analysis.

To simplify the analysis, it will be assumed that the journal
can be “unrolled” into a periodic sheet, as pictured in Fig-
ure 1. In the unrolled model, every point in the journal has
the velocity

V ≡ roωa2 (6)
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wherero is the outer radius of the journal,ω is the rotational
speed in rad/s, anda2 is a unit vector associated with theθ
coordinate. Eq. (3), the mechanism through which motion-
induced eddy currents are created, can then be simplified us-
ing the definition of velocity from (6):

∇×E =−ω
∂B
∂θ

(7)

By combining Eqs. (1), (2), and (7) and applying the con-
stitutive laws, partial differential equation describing the flux
distribution inside one lamination is obtained:

∇2B = ωσµ
∂B
∂θ

(8)

No thin-plate assumption has yet been made. In the unrolled
domain,

∇2 ≡ ∂2

∂r2 +
1
r2
o

∂2

∂θ2 +
∂2

∂z2 (9)

If the rotor is composed of thin laminations in thea3 direction,
the cross-lamination second-order term∂2

∂z2 can be expected to

dominate∇2
r,θB because the second derivatives ofB with re-

spect toz must be huge to affect any change inB across the
lamination thickness. The thin-plate model assumes that the
r andθ second-order components are so insignificant com-
pared to thez component that they can be neglected alto-
gether. Applying the thin-plate assumption to (8) yields a
simplified eddy current model driven by journal motion:

∂2B
∂z2 = ωσµ

∂B
∂θ

(10)

Equation (10) is very similar to Stoll’s 1-D diffusion equa-
tion; the difference is that for transformer-type losses, the
first-order derivative on the right-hand side is with respect to
time rather than the spatial coordinateθ.

Since the unrolled domain is 2π periodic in theθ coordi-
nate, the solution forB is expected to consist of harmonics
in θ. A phasor representation [7] can be adopted whereB is
understood to be the real part of

∞

∑
n=0

bnejnθ ≡
∞

∑
n=0

bn(cosnθ+ j sinnθ) (11)

wherebn is a complex number denoting the magnitude and
phase of thenth harmonic component ofB. Since the system
is linear, each harmonic can be considered separately and the
results for all harmonics superimposed to yield a solution for
B.

Substituting the phasor representation forB into (10) yields

∂2bn

∂z2 = jnωσµbn (12)

In the phasor representation, the flux distribution for each har-
monic is merely an ordinary differential equation respect toz,
the coordinate in the plate thickness direction.

Boundary conditions must be specified if (12) is to be
solved for the flux distribution in the laminated rotor. Let
each lamination be of thicknessd, and letz= 0 at the center

of the lamination of interest. Since the model is pseudo-2-
dimensional (that is, the flux density distribution is the same
in every lamination in the journal), one would expect noa3

component ofbn at the interface between laminations. The
axial component ofB, bn ·a3, is therefore equal to zero every-
where. Thea1 anda2 boundary condition at interface between
laminations then specified as

B[r,θ,
d
2
] = Bo[r,θ];

∂B
∂z

[r,θ,0] = 0 (13)

whereBo[r,θ] is some unknown function ofr andθ that is yet
to be determined. Converting the boundary conditions into
the phasor representation gives:

bn[r,d/2] = bn,o[r];
∂bn

∂z
[r,0] = 0 (14)

where bn,o represents thenth harmonic component ofBo.
Equation (12) subject to (14) is the same equation that must
be solved in [1] for transformer-type losses; the solution is

bn[r,z] = bn,o[r]
cosh[

√
jnωσµz]

cosh[
√

jnωσµ d
2 ]

(15)

The average flux density,̄bn, at in the lamination is found by
integrating across the lamination:

b̄n =
2
d

∫ d/2

o
bn[r,z]dz (16)

= bn,o
tanh[

√
jnωσµ d

2 ]√
jnωσµ d

2

However, the boundary field distribution characterized by
bn,o has not yet been determined. This boundary condition
should be chosen such that zero divergence ofB, equation (2),
is satisfied. To solve for an appropriateBo, define magnetic
scalar potentialΩ as

−µ∇Ω = Bo (17)

Since there is noa3 component ofB, zero divergence is satis-
fied if

∂Bo

∂r
+

1
ro

∂Bo

∂θ
= 0 (18)

The zero divergence ofBo written in terms of scalar potential
is

∂2Ω
∂r2 +

1
r2
o

∂2Ω
∂θ2 = 0 (19)

Transforming (19) into the phasor representation yields:

∂2Ωn

∂r2 −
(

n
ro

)2

Ωn = 0 (20)

It is reasonable to impose the boundary condition

∂Ωn

∂r
= 0; r = ri (21)

which requires that no flux crosses the inner radius of the jour-
nal at r = ri . At r = ro, the outer radius of the journal, the
value ofΩn is some specified value,Ωn,o:

Ωn[ro] = Ωn,o (22)
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Solving (20) with these boundary conditions gives the scalar
potential for each harmonic in terms of scalar potential at the
journal surface:

Ωn[r] = Ωn,o
cosh[ n

ro
(r− ri)]

cosh[ n
ro

(ro− ri)]
(23)

Eqs. (15) and (23) are combined to describe each harmonic
of flux density in the journal:

bn = −µΩn,o

(
n
ro

)[
cosh[

√
jnωσµz]

cosh[
√

jnωσµ d
2]

]
∗ (24)

[
sinh[ n

ro
(r− ri)]

cosh[ n
ro

(ro− ri)]
a1 + j

cosh[ n
ro

(r− ri)]

cosh[ n
ro

(ro− ri)]
a2

]

Through (24), the flux density is defined in terms of un-
known Fourier series coefficients of the magnetic scalar po-
tential at the rotor surface. If an input-output relationship be-
tween applied potential at the rotor surface to resulting flux
passing normal to the rotor surface is formed, the analytical
solution for the field inside the journal can be combined with
a computational model of the rest of the bearing to determine
the unknown distributionΩo[θ] at the rotor surface.

To simplify the analysis, it will be assumed that the flux in
the gap is purely 2-dimensional. However, the solution in the
lamination is a function ofz, as can be seen in (15). It will
be assumed that a transition between the 2-d solution in the
gap and the fully-developed profile described by (15) takes
place in a very thin skin region near the surface of the rotor.
The interface with the air is then modeled by a conservation
of flux passing normal to the air-iron interface:

(air)(B ·a1) =(iron) (B̄·a1) (25)

or for each harmonic:

(air)(bn ·a1) = (iron)(b̄n ·a1) (26)

In terms of scalar potential, the conservation condition is

µo
∂
∂r

[
(air)Ωn

]
=

[
µ tanh[

√
jnωσµ d

2]√
jnωσµ d

2

]
∂
∂r

[
(iron)Ωn

]
(27)

For continuity ofH on the air-iron boundary,

(air)Ωn =(iron) Ωn (28)

By differentiating (23) with respect tor, and substituting
into (27), a boundary condition results that relates the ap-
plied scalar potential on the journal surface,Ωn, to its normal
derivative on the air side of the iron-air interface:

∂Ωn

∂r
= µr( n

ro
)

[
tanh[

√
jnωσµ d

2 ]√
jnωσµ d

2

]
tanh[ n

ro
(ro− ri)]Ωn (29)

Eq. (29) specifies the relationship between potential in the air
to the normal gradient of potential at the surface of the rotor.
By solving for the potential distribution in thein the air only
subject to boundary condition (29), the field inside the rotor
is uniquely specified by (24).

3 Power loss

If the magnetic scalar potential is known at the rotor surface,
the field distribution in the journal is known, and eddy cur-
rent power losses can be computed. This loss,P, is found by
integrating resistive power loss over the volume of the rotor:

P =
∫ ro

ri

∫ d
2

− d
2

∫ 2π

0

(
1
σ

)
J ·J ro dzdrdθ (30)

Current densityJ is found via (1), by taking the curl of the
field intensity. Since ther andθ variation ofH are described
by scalar potentialΩ, J ·J simplifies considerably to

J ·J =
(

∂H1

∂z

)2

+
(

∂H2

∂z

)2

(31)

By orthogonality of sines and cosines, cross-products be-
tween different harmonics integrate to zero when (31) is eval-
uated over the entire volume of the journal. The power loss
contributions from each harmonic can be considered sepa-
rately and the results summed to get the total motion-induced
power loss:

P =
∞

∑
n=0

Pn (32)

For each harmonic, the power loss is

Pn =
π ro

σµ

∫ ro

ri

∫ d
2

− d
2

∣∣∣∣∂bn

∂z

∣∣∣∣
2

dzdr (33)

where ∂bn
∂z is found by differentiating (24) with respect toz.

Integrating (33) yields:

Pn = |Ωn,o|2
(

2πn
σδn

)
tanh[ n

ro
(ro− ri)]

[
sinh d

δn
−sin d

δn

coshd
δn

+cos d
δn

]

(34)
where

δn =
(

2
nωσµ

) 1
2

(35)

is the skin depth associated with each harmonic. Equation
(34) is the loss for each lamination; this loss must be multi-
plied by the number of laminations in the journal to get the
total bearing losses.

4 Incorporation of the Journal Solution with the
Bearing Structure

If the field at the surface of the rotor is known, the rotating
power loss can be determined via (34). As noted by Mat-
sumura [6], the distribution of flux on the air-iron boundary
has a large influence on the resulting power losses, and the
motion-induced eddy currents somewhat alter the field distri-
bution from the zero speed form. To determine the correct
potential distribution at the surface of the rotor, the analyti-
cal solution inside the rotor must be coupled to a numerical
solution for the field in the air between the poles and rotor
surface.
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Figure 2: Simplified computational domain for modeling
fringing effects.

An elaborate finite element or boundary element model
could be used to represent the stator. For the purposes of this
study, however, a very elaborate model is unnecessarily com-
plicated. The goal is to model the fringing of flux around
the edges of the poles correctly. To perform this task, it is
sufficient to use the simple computational domain pictured in
Figure 2. The computational domain is a thin annulus of air
between the rotor surface and pole tips.

If the stator is built of highly permeable material, the stator
back-iron can be considered magnetically “grounded” at zero
potential. The potential on a section of the outside boundary
of the annulus associated with thekth pole can then be spec-
ified to beN ik, the number of Amp-Turns of current flowing
in the coil around thekth pole.

Between pole tips, the boundary condition∂Ω/∂r = 0 is
applied. This boundary condition forces all flux to pass the
outer boundary of the annulus through the pole faces.

On the inside surface of the air annulus, boundary condition
(29) is imposed. To apply this boundary condition, the spatial
boundary values must be transformed into the phasor repre-
sentation, the boundary conditions applied, and then trans-
formed back into spatial coordinates. The transformation to
phasor form is

Ωn,o =
1
π

∫ 2π

0
(Ωo[θ]cosnθ− j Ωo[θ]sinnθ) dθ ; n > 0

(36)

Ω0,o =
1
2π

∫ 2π

0
Ωo[θ]dθ (37)

However, the boundary is represented by a finite number of
elements. Specifically, let the rotor surface be divided into
m discrete elements. Inside each element, the scalar potential
and normal gradient of scalar potential are approximated with
constant trial functions. Equations (36) and (37) can then be
approximated by the discrete transforms:

Ωn,o =
2
m

m

∑
k=1

(Ωo[k]cos[nkδθ]− j Ωo[k]sin[nkδθ]) (38)

Ω0,o =
1
m

m

∑
k=1

Ωo[k] (39)

whereΩo[k] is the value of scalar potential a the center of the
kth element, andδθ is the length of each element in radians.

axial length per bearing 4.4 cm
journal inner radius 2.54 cm
journal outer radius 4.55 cm

number of poles 8
number of turns per pole 94

pole width 1.90 cm
lamination thickness 0.3564 mm

lamination conductivity 7.46(106)(Ωm)−1

lamination permeability 3460µo

Table 1: High-speed loss rig dimensions.

Eqs. (38) and (39) are a linear transformation between the
spatial and phasor representations ofΩ on the rotor surface.
Since there is only a finite number of boundary elements, only
the first m

2 harmonics can be represented.

Since boundary condition (29) couples all boundary nodal
values, it is unsuitable for use with a finite element scheme in
which bandedness of the resulting stiffness matrix is essential
to an efficient solution. Instead, a boundary element analysis
is indicated. A boundary element scheme trades a large but
banded matrix for a much smaller but full matrix. Applying a
boundary condition that couples together all boundary nodes
is consistent with the boundary element formulation. A de-
tailed description of the boundary method with constant trial
function elements applied to solving∇2Ω = 0 is contained in
[8].

5 Comparison of Model to Experimentally Measured
Losses

Losses derived from the model can be compared to the losses
derived from run-down tests of the high-speed loss rig of
Kasardaet al. [5]. The dimensions of this rig necessary for
predicting rotating losses are contained in Table 1. The per-
meability,µ, and conductivity,σ, of the lamination material
were determined via a test ring built from the same batch of
material as the journal.

Run-down tests were performed on the rig at three different
bias current levels while running the bearing in a NSNS bias-
ing scheme. Assuming that the electrical losses scale with
the square of bias current level, the windage component of
the rotating losses was separated from the electrical compo-
nent. The result is a profile of eddy current loss per Ampere-
squared of bias current versus running speed. This experi-
mental result is compared with the predicted losses in Fig-
ure 3. (The error envelope in this figure are due to uncer-
tainty in the measurement of bias current levels for each run-
down test). Overall, the predicted losses correspond closely
to the measured losses. The model’s predictions are within
the bounds of experimental uncertainty throughout the entire
range of 1000 to 24,000 RPM.
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Figure 3: Experimental and predicted rotational losses.
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Figure 4: Comparison of NSNS to NNSS losses.

6 Results from the Numerical Model

Using the model, several long-standing questions with re-
gard to rotating losses in magnetic bearings can be addressed.
These questions are:

• Is it better to wind the coils of a bearing in a NSNS or a
NNSS configuration?

• Do motion-induced eddy currents significantly influence
the amount of flux crossing the air gaps, thereby chang-
ing the relationship between applied current and result-
ing force at high speeds?

6.1 NSNS Losses versus NNSS Losses

Several works have examined the question of whether lower
losses result from NSNS or NNSS windings of the bearing’s
poles [5] [6]. The general conclusion of these works is that
lower losses result from NNSS windings than NSNS wind-
ings. The present loss model shows a slightly different re-
sult. The model of the high-speed loss rig was evaluated us-
ing both configurations. A plot of the ratio of the two losses
versus rotor speed is shown in Figure 4. This plot shows that
NNSS losses are indeed lower at low speeds. However, there
is a point at high speed where the losses are equal for both
configurations. Beyond this point, NSNS losses are actually
lower than NNSS losses for the model of the high-speed loss
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Figure 5: Comparison of flux density profile at 25 and 25,000
RPM.

rig. The explanation for this behavior is that the losses in
each configuration arise from different sets of harmonics that
change in different ways in response to increasing speed.

6.2 Effect of Rotation on Flux Across the Gaps

It has been asserted in [6] that flux across the air gaps is not
greatly affected by motion-induced eddy currents in the jour-
nal. This claim is supported by the model of the high-speed
loss rig. As an example of the variation profile of flux density
crossing the surface of the rotor with rotor speed, the model
was tested in a NSNS winding configuration at 25 RPM and
25,000 RPM. The average flux distributions about one pole
resulting from a one Ampere bias current level are plotted in
Figure 5. The dashed line represents the distribution at 25
RPM, and the solid line the distribution at 25,000 RPM. The
flux density profile is suppressed at the leading pole edge;
however, the magnitude of the change is very small. There
is therefore a negligibly small variation in the relationship
between current and force for increasing rotor speed for the
model of the high-speed loss rig. However, for bearings with
a smaller gap, the change in the flux density profile with speed
may be more significant. If the gap is smaller, a higher per-
centage of the reluctance for any flux path will be carried by
the journal iron, accentuating the eddy current effects.

7 Conclusions

A simplified model of motion-induced eddy currents in the
rotating journal of a heteropolar radial magnetic bearing has
been considered. Simplifying assumptions used in the analy-
sis are:

• Hysteresis effects are neglected.

• The journal is treated as an “unrolled” periodic sheet.

• Second-order derivatives associated with the plate thick-
ness direction dominate the cross-lamination flux den-
sity profile (the thin plate assumption).

• Flux density in the air gaps is two dimensional. The tran-
sition to the fully-developed eddy current profile takes
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place in a negligibly thin region of the journal adjacent
to the air-iron interface.

The resulting eddy current model is then solved analytically
for the field distribution inside the rotating journal in terms
of the magnetic scalar potential applied at the surface of the
journal. The analytical solution of the magnetic field inside
the rotor is combined with a two-dimensional computational
solution of the field in the air between the journal and stator
surfaces so that the magnetic field can be computed for ar-
bitrary coil currents. The thin-plate model of rotating losses
shows good agreement with experimentally measured power
losses from a high-speed magnetically suspended rotor.

Several interesting corollary results arise from the model.
First, a NNSS biasing scheme provides lower rotating losses
at low speed while a NSNS scheme yields lower losses at very
high speeds. Second, the presence of rotationally-induced
eddy currents does not significantly affect the profile of aver-
age flux density on the surface of the journal. The relationship
between applied current and resulting force is nearly constant
across a wide range of running speed for bearings with rela-
tively large air gaps.

Several extensions of this work have yet to be considered.
The analysis could be expanded to approximately include the
effects of hysteresis using a constant phase lag between be-
tween B and H. The effect of time-varying coil currents is
also yet to be included. The present analysis does not address
homopolar radial bearings, which are expected to achieve low
rotating losses. The thin plate model might be extended to
address this configuration, but the analysis would have to
be expanded to a three-dimensional domain rather than the
pseudo-two-dimensional analysis appropriate for heteropolar
bearings.

References

[1] Stoll, R. L.: The analysis of eddy currents. Oxford Uni-
versity Press, 1974.

[2] R. B. Zmood, D. K. Anand, and J. A. Kirk, “The in-
fluence of eddy currents on magnetic actuator perfor-
mance,”Proceedings of the IEEE75(2):259-60, 1987.

[3] D. C. Meeker, E. H. Maslen, and M. D. Noh, “An aug-
mented magnetic circuit model for magnetic bearings
including eddy currents, fringing, and leakage,”IEEE
Transactions on Magnetics, to appear.

[4] C. Guerinet al., “A shell element for computing 3D
eddy currents – application to transformers,”IEEE
Transactions on Magnetics, 31(3):1360-1363, May
1995.

[5] M. E. F. Kasardaet al., “Design of a high speed rotat-
ing loss test rig for radial magnetic bearings,” Proceed-
ings of the Fourth International Symposium on Mag-
netic Bearings, Zurich, 1994.

[6] F. Matsumura and K. Hatake, “Relation between mag-
netic pole arrangement and magnetic loss in magnetic

bearing,” Proceedings of the Third International Sympo-
sium on Magnetic Bearings, Alexandria, VA, July 1992.

[7] S. R. Hoole,Computer-aided analysis and design of
electromagnetic devices, New York: Elsevier, 1989.

[8] C. A. Brebbia and J. Dominguez,Boundary elements:
an introductory course, New York: McGraw-Hill, 1989.

6


