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ABSTRACT

Recently, work on rotating losses in magnetic bearings has focused mainly on the mea-
surement of rotating losses, and on the creation of models that attempt to reproduce
these results. Though there has been some success on both counts, there has been less
emphasis on interpreting what these results mean in terms of practical guidelines for the
design of low-loss bearings. The present work reformulates a previously developed ana-
lytical model of rotating loss so that the effects shaft speed and pole count on rotating
losses can be more easily identified. Conclusions drawn from this formulation are then
compared to previously reported experimental data.

INTRODUCTION

Most recent work on rotating losses in heteropolar magnetic bearings generally has one
of two aims: either accurate measurement these losses, or development of analytical or
computational models for the losses. Losses have been measured via run-down tests
(Kasarda, 1997; Mizuno and Higuchi, 1994). Alternatively, losses can be deduced ther-
mally (Stephens, 1996). Models of the losses in heteropolar bearings have been derived
for the case of laminated rotors (Meeker and Maslen, 1998), and for solid rotors (Ahrens
and Kučera, 1996). Both of these works approach the problem via a Fourier analysis
of the magnetic field, as originally suggested in (Matsumura and Hatake, 1992). These
models address eddy current losses but have not yet been extended to include hysteresis
or saturation effects. However, these previous works do not explore the implications of
these results on the design of lower-loss heteropolar bearings. The main design question
addressed by these works is the merits of NSNS biasing versus NNSS biasing. However,
other aspects of geometry also have important effects on the amount of rotating loss:
number of poles on the stator; thickness of the journal iron; and the width of the poles.
The aim of the present work is to reformulate the loss model developed in (Meeker and
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Maslen, 1998) so that the effects of the bearing geometry are clearly in evidence. Con-
clusions drawn from this model are compared with experimental results from (Kasarda,
1997).

In outline, the model development presented previously in (Meeker and Maslen, 1997)
is reviewed. Next, this model is reformulated more clearly expose the significant parame-
ters controlling the losses. Then, the effect of shaft speed is examined. A nondimensional-
ized formulation needed for exploration of geometric effects is developed, and the effect of
pole count is explored. These findings are compared to data reported in (Kasarda, 1997).
The paper concludes with summary remarks and suggestions for natural extensions.

MODEL REVIEW

For rotationally-induced eddy currents in laminated heteropolar bearings, a thin-plate
model can be employed that is in some ways similar to the eddy current models used for
losses in transformer cores (Stoll, 1974). Since the laminations are thin in comparison
to the other dimensions of the journal, simplifications can be made which permit an
analytical solution for the field inside the journal laminations in terms of the field at the
surface of the journal. Rotating losses inside the journal are inferred from the field at its
surface. The reader is directed to (Meeker and Maslen, 1998) for a full derivation of the
present loss model; only the relevant results will be presented here.

The model assumes that the journal iron is magnetically linear, has constant, isotropic
permeability µ and conductivity σ, and has negligible hysteresis. The thickness of the
rotor laminations is represented by d. The coordinates θ and r denote tangential and
radial position relative to the center of the journal in a stator-fixed reference frame.

Since field in the rotor is 2π periodic in the θ coordinate, the magnetic field solution
consists of harmonics in θ. A phasor representation (Hoole, 1989) can be adopted where
average flux density across the thickness of a lamination, B̄, is:

B̄(r, θ) ≡ Re

[ ∞∑
n=0

b̄n(r) ejnθ

]
= Re

[ ∞∑
n=0

b̄n(r) (cos nθ + j sin nθ)

]
(1)

where b̄n is a complex number denoting the magnitude and phase of the nth harmonic
component of B̄. Since the system is assumed to be linear, each harmonic can be con-
sidered separately and the results for all harmonics superimposed to yield a complete
solution. In the same way, magnetic scalar potential, Ω, can be represented as a phasor
transform.

The main result of (Meeker and Maslen, 1998) is that the effects of eddy currents
inside the journal are represented solely by a boundary condition for each harmonic that
relates scalar potential applied to the surface of the journal to its normal derivative:

∂Ωn

∂r
=

(
µn

µoro

) 


tanh[(1 + j) d
2δn

]

(1 + j) d
2δn


 tanh

[
n
ro

(ro − ri)
]
Ωn (2)

Where δn is the skin depth for the nth harmonic component:

δn =

√
2

nωσµ
(3)
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This boundary condition can then be used in combination with a BEM or FEM model
of the bearing to solve for the scalar potential distribution on the surface of the rotor.

Once the distribution of potential is known on the surface of the rotor, the power loss
associated with each harmonic component can be computed by integrating the power
losses implied by the flux distribution inside the journal. For each harmonic component,
the loss for the entire journal is:

Pn = |Ωn,o|2
{

2π n l

σδn d

}
tanh

[
n
ro

(ro − ri)
] 


sinh d

δn
− sin d

δn

cosh d
δn

+ cos d
δn


 (4)

where l is the axial length of the journal and Ωn,o denotes the magnitude of the nth

harmonic of scalar potential at the surface of the rotor.

REFORMULATION OF LOSS EQUATION

In short, there are two main results of the thin plate eddy current model. The first is
eq. (2), a tool for relating the potential at the rotor surface to the flux that is flowing
normal to the rotor surface. If this boundary condition is used, the flux in the journal
need not be found explicitly, because an analytical solution for the flux in the journal is
implied by this boundary condition. The second is Eq. (4), an equation for eddy current
losses only in terms of potential at the rotor’s surface, the material properties of the
journal laminations, and the lamination thickness. Once the potential at the surface is
determined, the total rotating eddy current losses can be determined by summing the
loss components for each harmonic:

Ptotal =
∞∑

n=1

Pn (5)

Although these results are useful for a computational study of bearing losses, their
utility is somewhat limited. In the form of (2) and (4), nothing in particular is evident
about the effects of varying bearing geometry (except, perhaps, the trivial result that
losses can be reduced by thinner laminations). However, these equations can be reformu-
lated in a way that illuminates the effects of various geometric parameters on rotating
losses.

A crucial insight comes from several researchers (Meeker and Maslen, 1998; Mat-
sumura and Hatake, 1992): in the case of laminated rotors, the flux profile in the air gap
varies almost negligibly over a very wide range of speeds. Even though the reluctance of
the rotor rises due to the effects of rotationally-induced eddy currents, journal reluctance
remains small compared to the highly reluctant air gap. The result is a relatively constant
flux density profile over a wide range of speeds. If the expression for loss can be rewritten
in terms of flux density at the rotor surface, rather than potential, the magnetostatic
flux distribution (or some idealized flux distribution) can be used to estimate the losses,
providing a closed-form approximation for the losses, instead of the previous computa-
tional/analytical form. In this manner, the effects of different geometric parameters can
be explored directly.
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The goal is to solve for Ωn,o in terms of b̄n,o, which denotes the nth harmonic component
of the average flux density directed normal to the rotor at the surface of journal. The
loss will be in terms of flux at the surface of the journal. Since b̄n,o is the flux density in
the air at the journal surface, it can be written in terms of the scalar potential in the air
gap as:

b̄n,o = −µo
∂Ωn

∂r
(6)

Substituting (6) into boundary condition (2) relates Ωn,o to b̄n,o:

b̄n,o = −
(

µn

ro

) 


tanh[(1 + j) d
2δn

]

(1 + j) d
2δn


 tanh

[
n
ro

(ro − ri)
]
Ωn (7)

Taking the magnitude of both sides of (7) gives, after considerable simplification:

∣∣∣b̄n,o

∣∣∣2 = |Ωn,o|2
{

µn

ro

tanh
[

n
ro

(ro − ri)
]}2

{
2δ2

n

d2

} 


cosh d
δn

− cos d
δn

cosh d
δn

+ cos d
δn


 (8)

Solving (8) for |Ωn,o|2 and substituting into (4) gives

Pn =
∣∣∣b̄n,o

∣∣∣2
{

πr2
o l d

nµ2σδ3
n

} 


sinh d
δn

− sin d
δn

cosh d
δn

− cos d
δn


 coth

[
n
ro

(ro − ri)
]

(9)

Equation (9) can then be rearranged as the product of a term representing effective loss
per unit volume, Pe,n, and an effective journal volume, Ve,n:

Pn = Pe,n Ve,n (10)

where

Pe,n =
1

2

{ |b̄n,o|2 d

µ2σδ3
n

} 


sinh d
δn

− sin d
δn

cosh d
δn

− cos d
δn


 (11)

Ve,n = 2πro l (ro − ri)

{
coth [nw]

nw

}
(12)

and w is the non-dimensional journal thickness (“journal fraction”):

w ≡ ro − ri

ro

(13)

Two interesting points are directly evident from these forms. First, (11) has exactly
the same form as the classical expression for loss per unit volume. Second, (12) is just
the volume of the unrolled journal times a correction factor based on the thickness of the
journal and the number of the harmonic in consideration. As n increases, the effective
volume becomes smaller because most of the flux stays close to the surface of the journal.
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Figure 1: A component of Pe,n versus d/δn

EFFECT OF SHAFT SPEED

Since shaft speed, ω, appears only as a component of δn in Pe,n, its effects can be con-
sidered by examining this term alone. Previous works have asserted that rotating eddy
current losses should increase proportionally with ω2 (Kasarda, 1997; Matsumura and
Hatake, 1992). This dependence arises by considering only the first term in the Taylor
expansion of the classic loss/area equation about ω = 0. If (11) is also expanded about
ω = 0, the result is:

Pe,n ≈ 1

6

{ |b̄n,o|2 d2

µ2σδ4
n

}
=

1

24
|b̄n,o|2σ n2ω2d2 (14)

The ω2 loss dependence is shown in the present work in the case where d/δn is small.
However, this approximation must be judiciously applied for an accurate result. Con-

sider the second bracketed term in (11), denoted for ease of notation as u:

u ≡ sinh d
δn

− sin d
δn

cosh d
δn

− cos d
δn

(15)

The u term is plotted in Figure 1. The low-frequency approximation is obtained by
approximating u as its low-frequency asymptote,

u ≈ 1
3
d/δn (16)

However, u has a high-frequency asymptote of u = 1. This asymptote leads to a high-
frequency approximation of Pe,n as:

Pe,n ≈ 1

2

{ |b̄n,o|2d
µ2σδ3

n

}
=

|b̄n,o|2d
4
√

2µ2σ
[nωσµ]

3
2 (17)

The dependence on ω is to the 3/2 power, rather than squared.
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There is potentially a large difference between the two approximations. To decide
whether a given case is best approximated as low-frequency or high-frequency, consider
the intersection of the two asymptotes. These lines meet at d/δn = 3 (that is, when the
lamination thickness is three times the skin depth), which might be used as a dividing
line between the two regimes.

To get a feel for where this line typically falls, consider a journal composed of typical
0.35 mm (14 mil) laminations. If an eight pole stator run in a NSNS biasing scheme
is considered, the lowest numbered harmonic present will be n = 4. From (Meeker and
Maslen, 1998), measured properties for a particular sample of 3% Silicon Iron are σ=7.46
MS/m and µ=3460 µo. In this case, solving for ω when d/δn = 3 yields ω=10500 RPM –
roughly on the dividing line between what would be considered low speed and high speed
rotors.

Even for low-speed rotors, (14) cannot be used indiscriminately; substituting (14)
for Pe,n in (5) typically does not result in a convergent series. Even though the lower-
numbered harmonic components of the loss may be well approximated with (14), the
higher-numbered parts fall in the the small skin depth paradigm. For high speed rotors,
it may be most accurate to assume that loss goes with ω3/2. This way, losses will be
more accurate at high frequencies where the impact of the losses is more likely to be of
concern. Low frequency losses will be over-predicted, but the relative magnitude of these
errors will be small.

NONDIMENSIONALIZED LOSS

To examine the effects of specific geometric parameters, it is useful to nondimensionalize
the losses. Since losses are mainly of concern at high speeds, it is assumed that the Pe,n

can be approximated by (17).
The analysis is simplified somewhat by considering only the idealized flux distributions

of bearings with an even number of poles, neglecting leakage and fringing in the gap. In
this case, specific magnitudes can be prescribed for each b̄m,o. For a bearing with p poles,
each pole has a width of 2πFp/p radians, where Fp is the fraction of the journal’s surface
covered by poles: 0 < Fp < 1; a typical value of Fp is about 0.5. Under each pole, there
is a uniform flux density of magnitude Bbias normal to the journal; between poles, no
flux crosses the journal’s surface. The idealized flux distributions for both the NSNS and
NNSS biasing schemes are plotted in Figure 2. With these simple flux distributions, the
sequence of b̄n,o can be represented analytically by computing the phasor transformations
of the above profiles. The result of the phasor transformation is that all b̄n,o are zero
except for n where:

n =
(2m − 1)p

2 q
for m = 1, 2, . . . (18)

where q = 1 for NSNS and q = 2 for NNSS. The nonzero b̄n,o are:

b̄m,o =

{−j4 q Bbias

(2m − 1)π

}
sin

[
(2m − 1)π

2 q

]
sin

[
(2m − 1)π

2 q
Fp

]
(19)

Equations (18) and (19) show that changing the number of poles in the bearing doesn’t
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NSNS biasing scheme NNSS biasing scheme

Figure 2: Ideal flux distributions

change the values of the sequence of non-zero coefficients; it merely shifts the locations
where they occur in the sequence of n’s.

To compare losses produced by various pole widths in a meaningful way, these losses
should be compared for bearings with the same total pole area (so the same net amount
of flux is going through the journal, and the load capacity remains constant). The total
pole area,airon, is defined as:

airon = (2πrol)Fp (20)

Solving for l yields:

l =
airon

2πroFp

(21)

Since ri is usually specified by the shaft diameter, and ro is chosen later, it is useful to
substitute for ro in terms of w and ri:

ro =
ri

1 − w
(22)

Substituting (19) into (17), the high-speed approximation for Pe,n, yields:

Pe,m ≈
{

B2
biasd

4
√

2µ2σ
[ωσµ]

3
2

}
P̄e,m (23)

where P̄e,m is the nondimensional loss for each harmonic:

P̄e,m =

{
4 p3/2

π2

} [
2

(2m − 1)q

]1/2

sin2

[
(2m − 1)π

2 q
Fp

]
(24)

Substituting (21) and (22) into (12) yields:

Ve,n = (aironri) V̄e,m (25)

where the nondimensional journal volume, V̄e,m is:

V̄e,m =

{
2 q

p Fp (2m − 1)(1 − w)

}
coth

[
(2m − 1)p w

2 q

]
(26)
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The total non-dimensional loss, Q, for the bearing can then be obtained by summing
the contributions from each harmonic:

Q =
∞∑

m=1

P̄e,mV̄e,m (27)

Note that Q is independent of speed, material properties, and lamination thickness; it is
a function of w, Fp, and p, as well as the choice of biasing configuration, q. In addition,
Q is bounded by a series proportional to m−3/2, guaranteeing that Q converges.

EFFECT OF POLE COUNT

From (24), the loss per volume increases with p3/2. Therefore, increasing the number of
poles has the same effect on the loss per volume term as increasing the shaft speed, as
might be expected. However, the increase in the loss per unit volume is largely offset
by a decrease in effective volume. Eq. (26) shows that the effective volume goes with
(at worst) 1/p. At higher n, the flux tends to stay closer to the surface of the journal.
Multiplying the contributions from P̄e,m and V̄e,m yields a

√
p dependence of loss on pole

count.
Scaling by

√
p, however, represents a worst-case increase of losses with increasing pole

number. Due to the cotangent component of V̄e,m, the lower-numbered components of
the loss can scale at less than

√
p. If (p w)/(2 q) is small (when the journal is thin relative

to the number of poles), flux becomes significantly more concentrated than it would be
for either a thicker journal or a greater number of poles case. The effective volume rises,
and loss is higher. Increasing the number of poles while maintaining the same journal
iron thickness can pull the the lowest-numbered components out of this high-loss region,
resulting in the less than

√
p increase in losses.

COMPARISON TO EXPERIMENTAL DATA

A previous experimental study (Kasarda, 1997) measured the rotating losses in magnetic
bearings with a range of configurations. This work was based on measuring the rundown
rate of the suspended shaft under the combined influences of windage, hysteresis, and
eddy current losses. (Mechanical friction losses in the shaft were minimized by using a
very short, rigid shaft which should exhibit very little bending at the tested speeds.) It is
important to note that, as with virtually any power loss measurement it was impossible
for Kasarda to measure eddy current losses directly. Instead, the losses were inferred from
rotor speed versus time trajectories on the basis of a model which attempted to predict the
influence of windage, eddy currents, and hysteresis on this trajectory. Therefore, the eddy
current losses reported in (Kasarda, 1997; Minuzo and Higuchi, 1994) are substantially
colored by the model used to extract them.

Of particular interest in this study is the comparison between the losses in eight and
sixteen pole stator bearings. The stators were designed so that the total pole area was the
same for both designs. Two different shafts were used in the testing so that results were
obtained both with 0.38 mm (15 mil) radial air gaps and with 0.76 mm (30 mil) radial air
gaps. Both shafts had journals composed of 3% silicon iron with a lamination thickness
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Figure 3: Measured losses for various pole numbers and air gap lengths

of 0.36 mm (14 mils). Tests were run at bias levels of 0.32 Tesla, 0.38 Tesla, 0.46 Tesla,
and 0.54 Tesla. In all cases where results with similar air gaps and bias flux densities
are compared, the eddy current losses appeared to be identical (within the experimental
uncertainty) for the 8- and 16- pole stators. The data for the nominal 0.46 Tesla test do
not agree exactly, but the reported bias for the 8- pole stator is 0.44 Tesla which should
lead to about 10 percent lower losses, consistent with the experimental results. Examples
of the experimentally determined losses for these cases are pictured in Figure 3, taken
from data presented in (Kasarda, 1997).

To be consistent with the discussion above, which indicates that, if pole fraction Fp,
axial length �, and rotor radius ri are all held constant, then the losses should be at most
40 percent greater for the 16 pole bearings than for the eight pole bearings. In the case
of a change from 8 to 16 poles while keeping a constant air gap length, the increase in
losses is very modest–less than a p1/2 increase (the expected worst case rate of increase
in the present analysis).

However, the experimental data shows that, for the same bias field density, the losses
increase by nearly 100 percent when the number the air gap is decreased from 0.76 mm
to 0.38 mm. This is not consistent with the present model, in which fringing effects are
neglected (i.e. the same losses would be expected for both airgap lengths). Apparently,
fringing effects around the pole tips may have a significant effect on the subsequent
rotating losses.

It is also interesting to note that (Kasarda, 1997) used a model for the speed depen-
dence of the eddy current losses which goes as ω2 at low speeds but is mitigated by a
“crowding” effect at higher speeds: the second term in a Taylor’s series expansion of (11).
A simple null hypothesis exploration of the importance of this second term on regressing
the experimental data suggested that the term could not be significantly detected in the
data. The importance of this is that it suggests that the data is dominated by “low”

9



frequencies, which contradicts the present comment on the critical ratio of lamination
thickness to skin depth. One possible explanation for this apparent contradiction is that
the Taylor’s series for (11) does not converge very quickly and, in fact, retaining just the
first and second terms would imply an actual reduction of eddy current losses with speed
increase beyond about 15,000 RPM in Kasarda’s data: the model explored in the null
hypothesis test was poor enough that its rejection would be expected even if the data
was, in fact, substantially dominated by “high” frequency effects.

CONCLUSIONS

An analytical formulation was presented for predicting rotating losses in laminated het-
eropolar magnetic bearings. Several insights relevant to low-loss bearing designs were
gleaned from this formulation:

• Losses become proportional to ω3/2 at high speed.

• Increasing the number of poles while maintaining a constant pole fraction scales
the losses with

√
p in the worst case.

Additional geometric parameters like pole fraction and journal width are also brought
into evidence, although their effects on loss are not examined in this work.

Several significant discrepancies between previously reported experimental data and
the present analysis were uncovered. Examining the models which underlie the regressions
required to extract the experimental results suggests that some of these discrepancies may
stem from flawed experimental models. However, a significant corroboration lies in the
fact that the experimental work clearly suggests that the sensitivity of loss to the number
of poles is relatively small.

In order to reveal some of the geometric sensitivities, the present work idealizes the
field distribution around the journal as a square wave. The experimental data suggests
that fringing at the edges of the air gap plays a significant role in mitigating eddy current
losses. Therefore, an important extension of the present work would be to find a way
to introduce this effect in a simple manner so that power loss optimal designs can take
advantage of this effect as well.
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Ahrens, M. and L. Kučera. 1996. “Analytical Calculation of Fields, Forces and Losses of a Ra-
dial Magnetic Bearing with a Rotating Rotor Considering Eddy Currents,” Fifth International
Symposium on Magnetic Bearings.

Hoole, S. R. 1989. Computer-Aided Analysis and Design of Electromagnetic Devices, Elsevier.

Kasarda, M. 1997. The Measurement and Characterization of Power Losses in High Speed
Magnetic Bearings, doctoral dissertation, University of Virginia.

Matsumura, F. and K. Hatake. 1992. “Relation between Magnetic Pole Arrangement and
Magnetic Loss in Magnetic Bearing,” Third International Symposium on Magnetic Bearings.

10



Meeker, D. C. and E. H. Maslen. 1998. “Prediction of Rotating Losses in Heteropolar Radial
Magnetic Bearings,” Journal of Tribology, to appear.

Mizuno, T., and T. Higuchi. 1994. “Experimental Measurement of rotational losses in magnetic
bearings,” Fourth International Symposium on Magnetic Bearings.

Stephens, L. S. and C. R. Knospe. 1996. “Effect of Pole Arrangement on Core Loss in Laminated
High Speed Magnetic Journal Bearings”, IEEE Transactions on Magnetics, 32(4):3246-3252.

Stoll, R. L. 1974. The Analysis of Eddy Currents, Oxford University Press.

11


