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Abstract

Since the early 1970s, researchers have attempted to use pre-crash sensors in order

either to avoid or to lessen the severity of imminent collisions. Unfortunately, early

attempts met with limited success due to both technological shortcomings and, in a

more philosophical sense, flaws in their general approach.

This work revisits the notion of pre-crash sensing. The main objective is to develop

a collision prediction system that performs non-intrusive actions so that vehicle oc-

cupants are protected in the event of a collision. Non-intrusive techniques are desired

so that some false alarm predictions would be acceptable.

A paradigm is formulated in which this sensing can be used to reduce the sever-

ity of collision injuries. A neural network approach to medium range sensor signal

processing is examined and found to be inadequate for the purposes of collision predic-

tion. A deterministic scheme for short-range pre-crash sensing is developed, including

several simulation examples of the process. Finally, passenger restraints are optimized

with respect to the additional information derived from the pre-collision sensing algo-

rithm. It is found that a significant advantage in reducing peak occupant acceleration

is only obtained through the use of intrusive restraint systems, contrary to the initial

aim of the study.
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Chapter 1

Introduction

The present work arose from the intuitive notion that pre-crash radar sensing might

work better for optimizing passenger restraints inside automobiles rather than actu-

ally braking the automobiles. In the past, attempts at automatic braking all yielded

an unacceptably high rate of false alarms, making them unsuitable for production

cars. The unwarranted braking could actually cause a hazard in a traffic situation.

Restraint optimization, it was believed, would be a passive reaction to pre-crash sen-

sors in which false alarms would not affect catastrophic results.

A second motivation for the study was the idea that a lower false alarm rate might

be achieved by a better form of signal processing than had been used to detect immi-

nent crashes in earlier studies. Since many different heuristic strategies had all been

tried without success, a radically different approach was thought to be needed. Re-

cently, neural networks have received much acclaim for their ability to learn functional

relations between two sets on the basis of a sample data set. Such a device seemed

like a solution to lower the high false alarm rate and perceive complex relationships

between sensor data and collision prediction.

Work began first by investigating a neural network approach to collision predic-
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Sk = α(Sk−1, Ik)
�
�

delay

�Ok = β(Sk) � Ok
Ik Sk

Figure 1.1: Generic Discrete Time Dynamical system

tion. To train a neural network, one has to identify a set of variables as inputs and

another set of variables as outputs. The network then finds some kind of best-fit

relationship between many sample sets of inputs and outputs.

For predicting crashes, however, it was not obvious what should be the inputs and

what should be the outputs. The inputs should probably be some kind of outputs

from the pre-crash sensing equipment, but there was no a priori notion of which

outputs and from which times. Should data from the car itself be included? (speed,

acceleration, turning angle, and so on.) And how is it known if any particular set of

inputs corresponds to a warning condition? What condition merits warning?

Another problem had arisen that had been neglected in the original statement of

the problem. That is, What is the frame of reference? What is the model of the

system for this problem and is the model valid? What is the mathematical definition

of the problem that is being solved, and what assumptions are being made in the

solution?

What was needed was a way to mold the whole idea of collision detection and

restraint optimization into a form that was amenable for modeling and simulation.

The paradigm for the formulation came from control theory.

To make a model for use in a controls problem, one identifies a set of states (Sk),

a set of inputs(Ik), and a set of outputs(Ok), and a set of rules for transforming those
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states and outputs forward in time (α and β), based upon the present values for

states and the present inputs. A schematic representation of the system is drawn in

Figure 1.1. The above devices are chosen such that the model imitates some facets

of the real world deemed important to within some arbitrary degree of accuracy.

Once a frame of reference is defined, there exists a perspective with which to

examine the several relevant questions involved in making a working system.

• Are the assumptions made in the model valid ones?

• Is it possible to validate or verify the model?

• Is there enough information available from the sensors to observe all the states

of the system?

• Can an adequate prediction of the system state at some point in the future be

made, and with what amount of uncertainty?

• Can the control objectives be achieved with the available system inputs?

• What are the performance objectives of the system and are they realistic?

Not all of these questions have precise mathematical answers (especially for nonlinear

systems), but the reference frame provides a formal structure through which answers

to these questions might be determined.

In Chapter 2, previous work is examined to find out how the system was modeled,

what assumptions were made in creating that model, and what can be changed to

achieve a better success.
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For the remainder of the report, the system model is divided into two parts,

each of which are more or less considered separately. The first part is the external

model. This part of the model reflects the gross movements of the car in the road

environment. The restraint system needs to be able to adequately observe the states

of this part of the subsystem, but it cannot affect any control of its states. Then,

there is the internal model reflecting the actual movements of the occupant as a

result of a collision. The states of this subsystem need to be measured, and there

must exist adequate mechanisms to control these states. Both systems are necessary

to adequately model the entire system because the external model provides the impact

force input into the internal model.

In Chapter 3, a fairly broad frame of reference is taken with regard to the external

scenario. A model of the road with reasonably detained models of cars is developed

in an attempt to solve the problem by using neural network methods.

In Chapter 4, a new frame of reference with new sensors and new assumptions is

introduced to simplify the external system model and reduce the scope of uncertain-

ties. With this new model, a new sensing algorithm is developed.

In Chapter 5, an attempt is made to identify a suitable model for passengers inside

an automobile during a collision. Also addressed is the question of a suitable measure

of system performance. An investigation of optimal methods to restrain the occupant

proceeds on the passenger model.

4



Chapter 2

Previous Work

Several works have been published in which non-cooperative radar equipment (radar

systems that are meant to work without reflectors installed on all possible targets)

were used to either automatically brake the auto or warn the driver in dangerous

situations. Work began in the early 1970’s and has continued sporadically up to the

present.

Early works include the 1972 studies of Hopkins, et. al., [7] and Makino and Sato

[10]. These studies focused on using a fixed radar sensor to scan a zone in front of

the car. These radars estimated target position and velocity, and an effort was made

to classify targets on the basis of radar signature. From this information, a collision

judgement was made. If a collision was expected, an air bag was deployed.

Further works were published in 1974, this time with the emphasis shifted towards

active collision avoidance by automatic braking rather than the triggering of airbags.

Braking efforts were attempted at the Bendix Corporation [20] and by the AutoStop

Corporation [5] Both attempts used a sensing configuration similar to the previous

efforts devoted to airbag deployment.

A radar system was developed by G. Ross at the Sperry Rand Corporation [13]
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which still concentrated on the use of air bags. However, the suggestion was made that

the same system might be useful in automatic braking. This study made the claim

that a low false alarm rate might be achieved by the use of baseband radar rather

than continuous wave systems. A follow-up to this study was published in 1978 [14].

In this work, the baseband radar was applied to automatic braking. Considerable

effort was made to narrow the effective beamwidth of the system, presumably to cut

down on false alarms by scanning only objects that could cause a frontal collision.

In an attempt to eliminate problems with false alarms, C. Kaplan and P. Sterzer

at the RCA Corporation combined a cooperative system (a system where target

vehicles would bear a radar reflective tag) with a non-cooperative system similar to

the previously cited examples [9]. To restrict false alarms, the effective range was

reduced to only a few meters in the case of non-tagged targets.

In 1976, Wong et. al. completed an examination of an automatic braking system

using a fixed pulse doppler radar to predict front-end collisions [23]. Although several

radar antenna configurations and maximum ranges were tried, false alarms proved to

be too numerous for an effective automatic system.

In 1978, E. H. Dull et. al. reported improved performance for a fixed-radar

collision avoidance system [3]. These results were achieved by making the collision

judgement a function of many factors instead of merely approach velocity and dis-

tance. These factors included radar target signature measures and a range limitation

dependent on speed and steering angle.

For several years, interest waned in anticipatory crash sensing. Through the end of

the 1970’s, efforts focused only upon a single fixed radar to detect frontal collisions.
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By using basically only this one kind of experimental setup, researchers uniformly

encountered the same dilemma: if the field of view was widened to detect a large

percentage of front end collisions, the false alarm rate was unacceptable. The false

alarm rate could be made very small, but then the sensitivity of the system was so

reduced as to be of little value.

An example of narrowing the sensitivity to reduce alarms is the Rashid Radar

Safety Brake in 1988 [12]. The radar beamwidth was made very narrow, so as to

only be able to view an auto directly in front of the test vehicle. Conditions were

imposed such that the system would not provide warning if approach velocity was

over a certain threshold. Objects like pedestrians, animals, and so on, that do not

produce a large radar echo were also ignored. In this case, false alarms were low, but

many important accident scenarios (e.g. a car pulling out from a side street) were

ignored by the conditions imposed to reduce false warnings. Any road curvature,

crest, or sag that resulted in a misalignment between the test car and the target also

seriously affected performance, since the target would then have moved out of the

narrow sensing beam.

Also in 1988, there was the Nissan Laser Collision Avoidance System. [18] [11]

This system used a forward-looking laser beam instead of a radar. However, the infor-

mation garnered by the laser sensor and the processing scheme were nearly identical

to previous attempts using radar. The result was a system that had an unacceptably

high rate of erroneous warnings.

To some, it seemed that a greater amount of information needed to be gathered by

the radar sensors to provide a good discrimination of a dangerous situation. In about

7



1984, C. L . Lichtenberg at NASA Johnson used a modified phase monopulse radar

that could also give a measure of the angle of the target, even though the radar was

fixed on the test vehicle [14]. This study still resulted in limited useful performance.

Multipath effects and variable target size contributed to unacceptable accuracy in

target angle measurements. This angle measurement was seen as a key attribute for

a system which would be able to predict collisions with a low rate of false alarms.

With improvements in radar hardware technology, a scanning radar system has

currently become economically feasible. Several candidate scanning radar systems

were reviewed by M. Alvis et. al in 1991, but these systems have not yet been

included in any collision prediction experiments. [1]

Though these studies occurred over a span several years, all faced the similar

challenges and many used basically the same experimental configuration. Ultimately,

all fell victim to the same difficulties. Since the studies are very similar, only [23] will

be examined here in more detail.

The experimental apparatus of the 1976 study consisted of a 1973 Lincoln Con-

tinental equipped with a fixed-beam radar mounted on the front grill of the auto.

Additional signal processing equipment and actuators were also installed to allow

interpretation and implementation of the radar signal and automatic braking.

The objective of the system was to anticipate rear-end collisions and to apply

braking so as to avoid the collision. The radar would send pulses ahead of the car.

Then, the signal processing setup would interpret the stream of returned pulses to

deduce the distance and relative closing rate of the nearest sensed object. Finally,

the signal processor would decide if a collision was about to occur. If a crash was

8



anticipated, the brakes would be applied.

In general, the system was a failure. The system did indeed warn of anticipated

collisions, but the level of false alarms was unacceptably high. Alarms might be

triggered by roadside signs, overpasses, oncoming traffic in the opposite lane, the sides

of buildings, and so on. During the course of the investigation, hundreds of responses

indicating imminent collision were generated, even though the investigators never had

a collision during the in-traffic test runs. In fact, enabling the automatic braking in

an actual traffic situation would prove to be a greater hazard than not using the

system at all – the radar equipped auto would employ hard braking unpredictably

and uncontrollably. Fortunately, such a test was never attempted.

Though the 1976 device was not destined to be a production model, it did expose

several obstacles that would have to be surpassed or avoided in any future success-

ful effort. These problems lay both in the technology available in 1976 and in the

philosophical approach taken towards the concept of remote sensing.

The first technical problem was what was called the target recognition or target

signature problem. When an object was detected, it was not possible to tell exactly

what that target was – automobile, road sign, overpass, etc. This problem arose out

of the one-dimensional, limited information nature of the fixed radar. From simply

a distance and a closing speed measure, little could be assayed about the physical

character of the target. In this study, the only possible remedy was to shorten the

range of the sensor and narrow the beam width. This fix did reduce the number of

false alarms, but at the price of sensitivity towards targets that might cause an actual

collision.
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� � � �
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� x2
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��
x

Figure 2.1: 1-D collision scenario.

The signal processing scheme also contributed to the incidence of false alarms.

The processing concept assumed that

• the only object that could be detected was a valid target (e.g. no overpasses,

etc.)

• both the target and the radar-equipped vehicle only move in one dimension

(along a straight line)

• the radar-equipped vehicle’s maximum deceleration rate is known

• the target always moves at a constant speed.

Under these assumptions, one can write exactly the sensor conditions in which a crash

is indicated (See Figure 2)

Target:

x1 = position of rear of target

ẋ1 = v1

v̇1 = 0

Auto:

x2 = position of front of auto

10



a = braking rate

ẋ2 = v2

v̇2 = a

Absolute positions x1 and x2 are not important; just their relative positions and

relative velocities. The system equations are then

ẋ = ẋ1 − ẋ2 = v1 − v2 = v
v̇ = v̇1 − v̇2 = −a

sensor output

d = x+ noise
r = v + noise

The system integrates to

x(t) = −1
2
at2 + v(0)t+ x(0)

v(t) = −at + v(0)

A successful stop can be made if x > 0 when v = 0.

0 = −at+ v(0)

t = v(0)
a

0 < −1
2
at2 + v(0)t+ x(0) =

−1
2
a(v(0)

a
)2 + v(0)(v(0)

a
) + x(0) =

v(0)2

2a
+ x(0)

and a collision occurs when

x(0) ≤ −v(0)2

2a

substituting in observed sensor information for x and v, the warning law is then

d ≤ − r2

2a

Unfortunately, the above model uses assumptions that are not valid in an everyday

driving environment. The roadway is an inherently three-dimensional scenario (see

Figure 2.2), and there is large uncertainty in target motions extrapolated beyond a
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Going over a hill .Going around a corner.

Line of sight.

TARGET

AUTO

Figure 2.2: Examples of failure in 1-D assumptions.

small fraction of a second. Consequently, the processing scheme signaled many false

alarms.

Some of these inadequacies could be remedied by scanning radar, as suggested in

[1]. With an ideal scanning radar system, a complete two or even three dimensional

representation of the road might be produced. With such information, an intelli-

gent signal processing program might hope to solve the target recognition problem.

However, other problems with the braking approach would still lead to inadequate

performance.

Problems with the scanning radar approach lie in the necessity of the system to

predict the traffic situation up to several seconds in advance. A fairly large amount

of lead time is necessary for automatic braking or driver warning so that the car may

adequately brake prior to collision.

Currently, scanning radar systems for collision avoidance are in operation for civil
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Obstacle

Auto

Obstacle

Auto

Case 2Case 1

Obstacle in the roadObstacle on roadside

Figure 2.3: Two collision prediction scenarios.

marine and aviation use. In both the naval or aeronautical scenarios, the vehicles

move along straight lines or in pre-determined patterns for long periods of time in

environments that are for the most part free of obstacles. In these cases, the relevant

information in making a collision prediction is only the positions and headings of

near-by vehicles whose future positions might be predicted by extrapolation of the

present trajectories. This is exactly the information available from a scanning radar.

It is the hope of those interested in the scanning radar approach that a similar system

may be synthesized for use in cars.

A traffic environment, however, presents a much more complicated problem for a

scanning radar. The positions and velocities of all objects in the immediate vicinity

might not be enough information to predict a collision up to several seconds in ad-

vance. Other cues are necessary to grasp the traffic situation and react accordingly.

For example, consider Figure 2.3. Consider that in both cases in the figure, the driver
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has the same velocity and heading, instantaneously pointing toward the obstacle. In

the first case, however, the obstacle is off to the side of the road. By simply following

the road, no accident will occur. In the second case, however, the obstacle is truly

a hazard – if the driver continues along the road, a collision may occur. However,

without the ability to see the markings on the road, it would be difficult to see any

difference between these two different situations.

The scanning radar also cannot read a driver’s intent. Consider again the previous

example. Although the car in case (1) would not have a collision if the driver were to

simply stay on the road, there is no guarantee that the driver intends to veer right with

the road. Likewise, in case (2), no collision will result (nor any action be necessary on

the part of the crash-prediction system) if the driver intends to eventually slow down

or swerve around the obstacle. Both cases could potentially result in a collision, and

the uncertainty in the driver’s actions in the immediate future makes the prediction

of a collision uncertain.

As opposed to a brute force technological fix to the automatic braking problem,

the goals of the sensing effort should be modified to fit the present constraints on

sensing and signal processing. The new objectives would address activities occurring

within shorter time spans (where the level of prediction uncertainty is smaller) than

are required for automatic braking. Sensing configurations would be identified in

which the motions of all significant targets are observable, or all least configurations

that have very good statistical properties with regards to predicting collisions.
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Chapter 3

Neural Network-based Signal
Processing

3.1 Introduction

In an effort to remedy the shortcomings of earlier works, an attempt was made to

identify likely processing algorithms and sensor configurations by statistical methods.

The approach adopted in this study for examining collision prediction was based on

simulation. A simple traffic simulator was constructed which permitted driving a

test vehicle equipped with a specified sensor array through various traffic scenarios

and collecting the sensor data stream throughout the simulation. By examining the

correlation between the sensor data stream and the collision outcome of the simulation

in as general a manner as possible, it might be possible to establish more complex

correlations than would be determined through more heuristic methods as in past

studies. This would also permit correlating a larger collection of data than in the

past, where only one sensor could readily be handled.

To form this correlation between sensor data and collision outcome, a very large

number of simulations of randomly selected traffic scenarios was run to form a data
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base of sensor data sets and associated collision outcomes. This data base was then

used to train a feed-forward neural network using a backpropagation gradient de-

scent algorithm [15] [21]. At the end of the network training, the correlation sought

was contained in the gains and functions of the neural network, representing a func-

tional relationship between the sensor outputs and the collision prediction. For more

specifics of the neural network implementation, see Appendix A. Evaluation of this

correlation was accomplished by developing a second data base called an evaluation

set by simulating a new set of randomly selected traffic scenarios and acquiring new

sensor data set / collision outcome pairs. The already trained neural network was

then tested against this data set to see how often it would correctly predict a colli-

sion, how often it would fail to predict a collision, and how often it would give a false

alarm.

3.2 Traffic Simulation

3.2.1 Model Overview

The model is meant to simulate traffic traveling down a curving two lane road. The

environment is considered to be flat, and three dimensional effects (e.g. overpasses,

overhead signs, multipath effects) are neglected.

For the purposes of this model, the environment is divided into a finite number of

discrete objects any of which is a potential obstacle for the test vehicle. Each object

has the following characteristics: (see Figure 3.1

• (x, y) coordinates of some reference point on the object in a fixed reference

frame.
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steering angle 

desired path

x
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Figure 3.1: Traffic simulation scenario.

• heading φ, an angle measured from the positive y axis in the fixed reference

frame.

• a velocity v along that heading.

• c1, . . . , cn coefficients of a polynomial that describe the desired path of the ob-

ject. Usually this polynomial describes a line running down the middle of the

right lane of the road relative to the direction that the car is traveling.

• type of object (e.g. car, motorcycle, pedestrian).

• A number of test points on the object consisting of the location of the point

relative to a the object’s local reference frame

• the wheelbase of the object, if applicable.

In an effort to make moving objects follow their desired path, each moving object

also has two control inputs, the steering angle Θ and an acceleration a.
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3.2.2 Automobile Control Law

The motion of these objects during the simulation is described by a set of four coupled

equations of motion. Typically, these equations are

xt+1 = xt − ∆[v sin(φt + Θt)]

yt+1 = yt + ∆[v cos(φt + Θt)]

vt+1 = vt + ∆at

φt+1 = φt + ∆[v sin Θt]/wheelbase

where t is the tth time step into the simulation, and ∆ is the length of each time step.

The object motion depends not only upon past values of x, y, v and φ, but also upon

the control inputs a and Θ.

The purpose of the control law or driving algorithm which relates the control

inputs Θ and a to the motion of the vehicle is to mimic the way that a human driver

might respond to the given road situation. The specific nature of this control law

strongly dictates the mechanisms that cause collisions and thereby the statistics of

those collisions.

For most of the simulations, acceleration was assumed to be zero in order to

simplify the simulation math. (This restriction was dropped in one of the last example

cases, as will be discussed.) This reduces the problem to finding the best steering

angle at each instant in time. The maximum permissible steering angle decreases

with increasing vehicle speed. For example, the wheels might be able to turn 30◦

when maneuvering at 5 mph in a parking lot but at only 2◦ or 3◦ at 60 mph while
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driving down the highway. At an angle greater than the maximum, the car will lose

traction. Therefore, these angles are deemed unacceptable by the model.

The steering algorithm is constructed in such a manner as to minimize a “cost of

trajectory error” function. For each vehicle, a cost function is selected whose value

is roughly proportional to the distance of the vehicle to the nearest point on the

desired path. With acceleration always kept at zero, the range of acceptable Θ for

the object’s velocity is searched to find that value of Θ which results in the lowest

cost at the next time step.

Because velocity is constant and the maximum angle of Θ is restricted by a func-

tion of velocity, the vehicle may leave the road or cross the centerline in curves, just

as if a human driver negotiates a tight curve at too high a speed. A collision can

occur if a car or stationary roadside obstacle is in the way when these deviations from

the desired path occur.

3.2.3 Sensor Models

As previously discussed, each object in the model has a set of associated test points

located along its edges. The first step of the sensor simulation is to transform the

coordinates of all of the test points from the each object’s local reference frame into

the global reference frame. These points are assembled into a table which records the

global position of each data point, which object the datapoint is on, and whether or

not is it viewable by the test car’s sensors.

A region describing the sensor’s coverage is bounded by four lines: (see illustration

in Figure 3.2)
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Figure 3.2: Fixed radar field of view.

1. left edge of the sensor arc

2. right edge of the sensor arc

3. a line normal to the test vehicle’s heading

4. a circle that describes the sensor’s maximum range

These lines can be thought of as the loci of points where four 3- dimensional

surfaces intersect the 2-dimensional model. These surfaces are defined such that

when a point in the model is projected onto each of the 3-D surfaces, it is in the

positive part of every surface only when the point is inside the sensor-visible arc.

Specifically, the equations for these surfaces are

z = cos(φ+ ψ)x+ sin(φ+ ψ)y − sin(φ+ ψ)Y − cos(φ+ ψ)X
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z = − cos(φ− ψ)x− sin(φ− ψ)y + sin(φ− ψ)Y + cos(φ− ψ)X

z = cos(φ+ π/2)x+ sin(φ+ π/2)y − sin(φ+ π/2)Y − cos(φ+ π/2)X

z = −(x−X)2 − (y − Y )2 + r2
max

where (x, y) is the global position of the test point, (X, Y ) is the global position of

the test vehicle, and ψ is the half-width of the sensor’s arc.

After each point is tested, the sensor simulation returns the Euclidian distance to

the nearest test point and the component of closing velocity of the test point that is

visible to the radar sensor. In the case of a forward-looking radar on the centerline

of the radar equipped car, that velocity, vrel, is given by

vrel = vtarget(sin φtarget sinφauto + cos φtarget cosφauto) − vauto

In later versions of the simulation, a sensor model resembling a scanning radar or

phased array sensor rather than fixed police-type radars is used. In this variant, the

distance to each test point is calculated and both components of the relative velocity

computed. The sensor model then returns the distance and both velocity components

of the nearest test point moving towards the test vehicle.

3.2.4 Collision Detection

Collisions are detected in the same manner as sensor contacts. Four lines are drawn

that define the edges of the test car. Planes are then constructed that intersect the

plane of the model in such a fashion that points inside the edges of the car give all

positive results when projected onto the planes. If any of the test points are on the

positive section of all four planes, a collision has occurred.
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3.3 Collision Alarm Synthesis

Ideally, given a data set consisting of some collection of measurements from the sensor

array, there would be a mapping or function which would produce the direction and

kinetic energy of any impending collision. Negative kinetic energies would indicate

that no collision was expected. Such a mapping might look like:

{
E
ϑ

}
= f (s1(t1), s1(t2), . . . , s1(tn), s2(t1), s2(t2), . . . , s2(tn), . . . , sm(t1), sm(t2), . . . , sm(tn))

The kinetic energy of impact is represented by E while the direction of the impact

is represented by ϑ. Note that, for effective restraint optimization, both of these

quantities must be known. The si are range data from the ith sensor, taken at time

tj . Other information which might contribute to the function include test vehicle

position, velocity, and acceleration; road condition; time of day; and so on.

If it were possible to exactly construct a model of the obstacles around the moving

car from the sensor data, then such a function could be found. A function of this type

would be described as a causal relationship. However, some simple experimentation

and consideration of the geometry of the traffic problem in two or three dimensions

revealed that such a reconstruction is not possible without a full blown pattern recog-

nition analysis of a fairly detailed image of the car’s surroundings. (Methods based

on pattern recognition are used in terrain following navigation systems for fighter

aircraft, for example.)

Preliminary experiments indicated that, for the intermediate range sensing scheme

employed in this simulation, a correlation to collision energy and direction was ex-

tremely difficult to identify. Consequently, the simpler problem of simply triggering
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a collision alarm was examined. While such a simple alarm would be of little value in

optimizing the passenger restraints, it was felt that, by examining the properties of

this simpler problem, some understanding of the basic detectability problem could be

obtained. Thus, rather than seeking a correlation between sensor signals and impact

energy/direction, the signals were correlated to a “likelihood of collision” measure or

warning rule.

A further conclusion recognized at an early juncture was that, because it is not

possible to fully reconstruct the obstacle field from the restricted sensor data available,

any correlation between sensor data and collision outcome would be of a statistical

nature. That is, since the collision predictor does not have enough information to

perfectly extrapolate the motion of the test vehicle and its surrounding obstacles to

determine imminence of collision, it must make a “best guess” based on its “experi-

ence” with similar data. This “experience” and the corresponding “best guess” takes

the form of a complex conditional probability distribution.

In all cases, the synthesis of this warning rule was done using a feed-forward neural

network. A feed-forward neural network is a method for determining a least-squares

continuous curve fit between a set of input and output samples. To create to sample

data record, some arbitrary collection of data for each instant was taken to be the

input, and a -1 or 1 was taken to be the output, depending upon whether or not

a collision occurred in the simulation within one second of when the data set was

recorded. When the neural network is trained, the network reflects a smooth surface

varying between -1 and 1. By picking some threshold, one can declare every response

above the threshold an alarm and everything below the threshold as safe.
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Several different input configurations were tested during the course of exploring

the simulation. Since the mapping from inputs to warning level was found to be

of a statistical rather than a deterministic nature, the hope was to experimentally

identify some input configuration in which all of the collision data would be highly

clustered together and well separated from the non–collision data. Such a space would

yield a reliable predictor of imminent collisions with a low incidence of false alarms.

Additionally, such a mapping would be determined automatically by the statistical

characteristics of the data rather than by some arbitrary heuristic, as with previous

studies of this sort. Complete results for each test configuration are contained in

Appendix B.

3.4 Simulation Results

3.4.1 Case 1

Since there was no clear choice for a specific time history of inputs and since low

dimensionality is more conducive to empirical curve fitting, this test included only

the range and closing velocity output of three sensors mounted on the test car. Each

of the sensors has an effective range of 300 feet and scans an arc of 4◦. The sensors

are located on the front of the car at −30◦, 0◦, and 30◦ from a line running down the

center of the vehicle.

In this test run, the only obstacle is a car moving down a curving two-lane road

moving in the opposite direction. The speeds of each vehicle were chosen randomly

during each trial run between the values of 35 and 45 miles per hour.

The entire record for each test run was stored in memory. Every sensor contact
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Figure 3.3: Decision Surface for Center Sensor, Case 1.

was then stored to disk with an indication of whether or not a collision occurred

within one second of that instant. For the specific test set used to train the network,

the log contained data from 500 simulation runs (28 of which resulted in collisions)

and 7305 data points. Finally, a six–input, one–output feed-forward neural network

was trained to this training set using a gradient descent algorithm.

In this example, there is only one object that can be seen, and the sensors do not

overlap. Therefore, the sensors are effectively de-coupled, and the network’s actual

discrimination function can be shown.
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Figure 3.3 shows the mapping that the neural network produced for objects seen

by the sensor pointing straight ahead in the condition that the other two sensors see

no object. As previously stated, a threshold is chosen, and if the height on the surface

corresponding to the rate – closing rate pair is higher than the threshold, an alarm

is sounded for one second. Otherwise there is no alarm.

Response from this network was not particularly good. Though the net defined ar-

eas of the inputs space that were highly associated with collisions, the small arcwidth

of the sensors (4◦) meant that objects were often not seen at all before a collision

occurred. An example of the net’s typical response is the threshold = 0 case – any

input set that provokes a response greater than zero triggers an alarm. For a typical

test run of 1000 simulations, 69 collisions occurred. A total of 48 collision alarms

were generated, but only 35 of these corresponded to actual collisions; the rest were

false alarms. The average warning time was 0.158 seconds. Typically, the false alarm

rate was acceptable (as above), but the percentage of collisions detected, only 51%,

was unacceptable.

A possible remedy is to widen the arc widths of the sensors considerably beyond

their 4◦ widths. By widening the arcs, the problem of completely undetected objects

would be addressed.

3.4.2 Case 2

The same configuration was used as in Case 1, except that 30◦ arcwidths were used

rather than 4◦ arcwidths. The same obstacle was used – one car in the adjacent lane

traveling in the other direction as the test car.
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An identical network training procedure was followed in the creation of Case 2 as

in Case 1. The resulting decision surface for the forward view is nearly identical in

this case as in this case as in the previous example. However, the right-facing sensor

was found to have no connection with collisions strong enough to provide anything

but a flat surface near the -1 alert level throughout the entire mapping. The left

facing sensor still retained a region where alarms could be created, but this region

was reduced sharply such that alarms from the left sensor would not be created unless

an obstacle was within ten feet and at a high closing velocity.

Under testing conditions identical to the conditions under which the data was

generated, Case 2 performed markedly better than Case 1. For example, at one

threshold = 0 testing, 60 collisions occurred, 114 alarms were sounded, and 55 col-

lisions occurred during an alarm. Average warning time was much better, now at

0.515 seconds and the percentage of collisions detected increased to 92%.

3.4.3 Case 3

The next issue to examine was whether the performance would be maintained under

testing conditions differing from those under which the training data was generated.

To examine this question, 10 point obstacles (representing small, stationary road-side

objects like road signs, trees, and rocks) were placed randomly throughout the course

at a distance between 30 and 70 feet from the centerline of the road. In this case, the

system performed very poorly. Only a small percentage of collisions were detected.

The reason for the drastic degradation in performance can be seen by referring back

to Figure 3.3. Since all of the collisions in the training set were the result of essentially
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head-on impacts with an automobile moving in the other direction, only in a region

where closing rate was greater than about 70 mph could an alarm be generated.

Collisions just didn’t happen at slower closing rates in the training set; therefore,

the net did not learn to create alarms for those cases. Since collisions with roadside

obstacles occurred at around 35 to 45 mph closing rates, none were detected.

3.4.4 Case 4

Subsequently, a new network was trained using the same configuration as Case 2,

but with a dataset derived from exactly those conditions where Case 3 showed poor

performance: with roadside obstacles. After training, examination of the network’s

mapping showed that under these training conditions, the side-view sensors had no

correlation whatsoever with the prediction of collisions. Effectively, the side-view

sensors were turned off by the network and their output ignored.

For comparison with the mappings from the previous to cases, Figure 3.4 repre-

sents the decision surface for the forward facing sensor for this training. As one can

see, the areas where an alarm can be generated have expanded down into the slower

closing velocities. Another notable change is that the range from which a collision

warning can be produced is cut back considerably as compared to Case 1. For ex-

ample, at threshold = 0, alarms can only be produced in the 20 to 40 foot range,

depending upon the approach velocity. Typically, the system responded well under

testing conditions when an appropriate threshold was chosen.

28



0

100

200

300

Range, ft

-90

-80

-70

-60

-50

Rate, ft/s

No Collision

 

 

 

Collision

 

0

100

200

300

Range, ft

-90

-80

-70

-60

-5

Rate,

ion

 

 

 

n

Figure 3.4: Decision Surface for Center Sensor, Case 4.
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3.4.5 Cases 5 and 6

An attempt was then made to examine if a sensor scheme similar to a scanning radar

or phased array detector would provide better results. As stated previously, the sensor

returned the relative position, velocity, and heading of the closest approaching object.

These facts were presented to the network as inputs in addition to the test vehicle’s

own speed and steering angle.

Two cases were trained. Each was trained on a dataset consisting of 40,000 test

samples taken in simulation runs in which 80 collisions occurred. In the first case, it

was hypothesized that the entire collision area could be bounded by a hyperellipsoid

as opposed to a more complex type of neural network. For the data collected, this

assumption seemed to work quite well. Paradoxically, the more complex net produced

a system that did not perform as well in trials as the simpler system. This effect is the

result of the complex network producing much more sharply defined alarm-producing

regions that generalized poorly to collisions that did not exactly resemble those in

the training set. Since the simpler mapping was somewhat constrained by the form of

the network, it created broader alarm-producing regions that performed better during

testing.

3.4.6 Cases 7 and 8

To evaluate the effect of the driving algorithm assumptions, the best performing

neural net/ sensor array configuration: that developed as Case 5, was reevaluated

using evaluation data derived under modified driver algorithms. In Case 7, the driver

algorithm was modified to permit braking of the vehicle in the event of excessive
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divergence from the target trajectory. Evaluation of the neural network with this

driver algorithm revealed the extreme sensitivity of the network to driver algorithm

assumptions: the system failed miserably, missing over 80 percent of the the collisions

and yielding a false alarm rate about 400 times as high as the collision rate. Such a

system would clearly not be acceptable.

Case 8 represents a milder modification of the driver algorithm where, effectively,

the driver looks farther down the road in making steering decisions, but no acceler-

ation is used. In this case, the percentage of missed collisions was more acceptable:

typically only about 16% but the false alarm rate was still unacceptable high – about

3:1, depending upon the choice of threshold.

3.5 Conclusions

In general, all procedures showed a high sensitivity to changes in the driving environ-

ment. The biggest result of increasing the complexity of the environment was that the

system became increasingly more conservative in declaring alarms by waiting until an

object was inside a rather small distance and at a reasonably high approach velocity

before an alarm would be called.

In one network configuration, the scanning sensor provided good performance, but

this configuration appears to be even more sensitive to model parameters than the

fixed sensors. For example, as a result of the rule used to pick how the cars would

choose to turn in a given situation, collisions always occurred when the test vehicle

was turning hard, either to the left or the right – because collisions only occur when

the car has swerved out of its lane and is trying hard to get back into it. By looking

31



at the net mapping surface, one sees large regions where a crash can occur for those

instances where the wheels are turned sharply, but no zone at all when the wheels

are pointed straight on. Intuitively, this does not make sense. One would think that

at least some collisions would occur if the driver was going basically straight ahead.

However, the network does not reflect that result precisely because of the method

used to generate data.

Lacking the information to produce a full reconstruction of the car’s surroundings,

the best correlation between sensor data and collision that can be derived is a statis-

tical description. That is, the output of the data function is a statistical probability

of collision. The drawback to a statistical description as opposed to a causal function

based on a full reconstruction is that such a description embeds the statistics of the

data used to generate it. While the function may produce fairly accurate predictions

of accidents, it will do so only for accidents produced under the specific assumptions

used to generate the data from which the correlation was drawn. Such correlations

produce very poor results when applied to data generated by traffic scenarios with

significantly different underlying assumptions.

After examination of a variety of simulation sets, it was concluded that any corre-

lations derived in the long range will be extremely sensitive to driver algorithm and

roadway shape statistics. As an extreme example of the sensitivity to driver/roadway

characteristics, consider the following scenarios:

1. A set of driver and roadway characteristics is developed such that in every case

where the radar saw an object, a collision would result.
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2. A set of driver/roadway characteristics such that there are many close passes

that the radar could sense, but no collision occur.

Now, if a network were trained from data from case (1), it would learn that any

sighting always implies an impending collision. Now, if the network trained on (1)

were tested on case (2), the network would call a false alarm every time an object

came into view. Likewise, a network trained on case (2) and applied to case (1)

would never anticipate any collisions. The point is that the statistical attributes of

the model used to train the network are imbedded into the network, and no “general”

result is obtained. Since the reason for using a model to generate learning datasets

was originally that no applicable data exists, it is impossible to determine what the

“right” driver/roadway characteristics are to imbed to get a “generalized” result.

The above observations suggest that the collision predictions can be made less

sensitive to roadway statistics and driver algorithm if the sensing region – both spatial

and temporal – around the test car is reduced to less than the driver reaction time.

In previous studies, including this one to date, sensor information has been correlated

in an effort to predict collisions at least a second in advance. In past studies, this

was demanded by the end object of collision avoidance through automatic braking.

Here, however, our objective is merely to obtain enough advance warning to be able

to optimize the passenger restraints to minimize the injuries due to what is considered

an inevitable collision. Indeed, it is unlikely that a warning lead time of more than

about 100 msec would have much value in passenger restraint optimization.
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Chapter 4

Short Range Sensing

4.1 Derivation of the Sensing Scheme

The sensing goal is to determine the relative position and velocity of any incoming

object. In previous long-range sensing efforts, these quantities could be completely

determined only under unrealistic assumptions. Instead of radar sensing, the sensor

type is changed to a narrow beam sensor (ultrasonic, optical) that will return a

distance along that narrow beam to the nearest object within sensor range. By

limiting the sensors to a short range (in the range of 3 to 10 feet), it is possible to

propose a scenario in which several assumptions might be made that are not valid

for long range sensing. By employing these assumptions, all components of relevant

target position and velocity are available.

Specifically, the short range assumptions are:

1. There is only one target in view at any time to each sensor array. (Or, at most

one target is in view on each side of the car.)

2. Any target moves in a straight line at a constant velocity relative to the sensor

equipped auto .
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3. Any target has negligible rotational velocity relative to the sensor equipped

auto.

Because the sensor range is very short, assumption 1 is well founded. The sensor

range can be reduced to less than the distance that drivers normally like to keep

between their cars and any other cars or obstacles. Any object that comes close

enough to be sensed then has a high probability of being a hazard. Furthermore,

collisions do not usually involve two oncoming cars hitting a third car simultaneously

on the same side of the auto. Therefore assumption 1 is made.

Assumption 2 can be made because of the short amount of time for which the

target is viewed. Even if the path of the target is curved, the duration of sensor

contact is so brief that the path can be adequately represented by a linearization of

the path for the duration of sensor contact. For example, if a target automobile is

approaching at a relative velocity of 30 miles per hour (44 feet/sec), the target is only

in view for about 0.07 seconds – a suitably small amount of time in comparison to

the time scales at which events happen on the roadway typically about an order of

magnitude greater, from previous results. Therefore, assumption 2 is made.

Likewise, the small time window used by the sensors justifies the use of assump-

tion 3. Though the target may be turning or even spinning (e.g. an uncontrolled

skid on icy roads), the angle of rotation covered in less than a tenth of a second is

negligible for any kind of angular velocity that could be achieved in an automobile.

In short, the the sensing problem has been changed from the point of view used in

the neural network portion of the study. Positions and velocities of objects that were
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Figure 4.1: Schematic representation of lateral short-range sensors.

relevant to the situation but difficult to measure are made irrelevant by the shortening

of sensor distance. Uncertainties in driver action are eliminated by viewing a small

enough window so that the driver could have little or no effect. These assumptions

reduce the system equations for all relevant targets to simply:

ẋ = vx

v̇x = 0
ẏ = vy

v̇y = 0

where x and y are the relative position of the nearest point on the target and vx

and vy are the relative velocity of the object. All of these states will be shown to be

estimated by the new sensor configuration.

To determine the velocity of the incoming target, the following procedure can be

taken. Take an array of parallel sensors mounted on

one side of the automobile, as in Figure 4.1. Call the output of the sensor at

time T , Y and the output from one step later at time T + ∆T , Ŷ . The profile of

the incoming target is approximated by lines joining the points measured by each of
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the sensors. Displacement of Ŷ with respect to Y can then be represented by the

displacements ∆x and ∆y. ∆x and ∆y are determined by a least-squares fit such

that the midpoints of each line segment match with the least error when the pattern

is shifted.

Take any two adjacent sensors, n and n+ 1. When Ŷ is displaced by ∆x and ∆y,

the squared error for the midpoint of the segment is

e =

[
Yn + Yn+1

2
−
(
Ŷn + Ŷn+1

2
+ ∆x

Ŷn+1 − Ŷn

l

)
+ ∆y

]2

where l is the distance between sensors. The ∆x and ∆y that minimize e satisfy are

∂e

∂∆x
= −2

Ŷn + Ŷn+1

2

[
Yn + Yn+1

2
−
(
Ŷn + Ŷn+1

2
+ ∆x

Ŷn+1 − Ŷn

l

)
+ ∆y

]
= 0

∂e

∂∆y
= 2

[
Yn + Yn+1

2
−
(
Ŷn + Ŷn+1

2
+ ∆x

Ŷn+1 − Ŷn

l

)
+ ∆y

]
= 0

However, these two equations are linearly dependent and alone cannot solve for

∆x and ∆y. Dividing out constants, each can be reduced to

2(Ŷn+1 − Ŷn)∆x− 2l∆y = Yn − Ŷn + Yn+1 − Ŷn+1

However, a second set of equations is also valid. Instead of shifting Ŷ relative to Y ,

Y could be shifted relative to Ŷ :

2(Yn+1 − Yn)∆x− 2l∆y = Yn − Ŷn + Yn+1 − Ŷn+1

If the target is seen by more than two sensors, the same equation can be written

for each set of adjacent sensors, leading to an over-determined system for ∆x and

∆y:

M

{
∆x
∆y

}
= b
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which then can be solved by pseudoinverse methods.

{
∆x
∆y

}
= [MTM ]−1MT b

Note that the inversion of [MTM ] only involves the inversion of a 2 × 2 matrix.

Once ∆x and ∆y are determined, the point of impact can be extrapolated by

employing an integration of the system equations. The nearest point detected by

the sensors (estimate of x and y) is moved forward in time with velocities vx ≈

∆x/∆t and vy ≈ ∆y/∆t (where ∆t is the time between Y and Ŷ ) until an contact

occurs. Averaging predictions from several time steps usually will lead to a good

approximation of the time, point, direction, and velocity of impact.

Note that the scheme can be generalized so that the beams do not have to be

strictly parallel. In the previous derivation, the x location of each of the data points

was included implicitly through l, the distance between sensors. For the case in which

the sensor beams are not parallel, the x-coordinate will be included explicitly – there

is a vector X̂ associated with Ŷ and a vector X associated with vector Y determining

the 2-dimensional position of each of the sensed points.

The same method of matched section midpoints is used. The midpoint of the

segment from Yn to Yn+1 is

{
Xn +Xn+1

2
,
Yn + Yn+1

2

}

The equation for the line joining Ŷn to Ŷn+1n is

y =
(Ŷn+1 − Ŷn)

(X̂n+1 − X̂n)
(x− X̂n) + Ŷn
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Figure 4.2: Graphic representation of sensor problem.

The shift of the segment from Ŷn to Ŷn+1 corresponding to the midpoint of the section

from Yn to Yn+1 is then

{
Xn +Xn+1

2
,

(Ŷn+1 − Ŷn)

(X̂n+1 − X̂n)
(
Xn +Xn+1

2
− X̂n − ∆x) + Ŷn + ∆y

}

The squared error between these points is then

e =

[
Yn + Yn+1

2
− (Ŷn+1 − Ŷn)

(X̂n+1 − X̂n)
(
Xn +Xn+1

2
− X̂n − ∆x) − Ŷn − ∆y

]2

Differentiating as before, e leads to the equation

Ŷn+1 − Ŷn

X̂n+1 − X̂n

∆x− ∆y = Ŷn − Yn + Yn+1

2
+

(Ŷn+1 − Ŷn)

(X̂n+1 − X̂n)
(
Xn +Xn+1

2
− X̂n)

This equation degenerates into the form derived for parallel sensors if Xn = X̂n and

Xn+1 = X̂n+1.

As an illustrative example, consider Figure 4.2. Y represents datapoints taken

from a parallel sensor array at some instant in time. Ŷ represents datapoints taken

from the same sensors at an instant ∆T seconds later. The filled circles represent the
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Figure 4.3: Superposition by prescribed displacement

measured data points. An estimation of the surface of the target is formed by joining

the measured points by line segments. Since both Y and Ŷ are measurements taken

from the same surface, the movement of the target object can be found by finding the

shifts ∆x and ∆y such that surface made by joining the points in Y will best match

up in the surface defined by Ŷ .

The fit in each segment is assessed by comparing the open circles in Figure 4.2.

On the Y segments, the open circles will simply lie at the segment midpoints. On the

Ŷ segments, however, the open circles lie on the point corresponding to the midpoint

displaced by ∆x down the line segment. The objective is to pick ∆x and ∆y such

that the squared distance between corresponding open circles is minimized when the

Ŷ set of open circles is shifted back by ∆x and ∆y.

The problem in Figure 4.2 was solved for the best-fit shift using the formulas

previously derived. Ŷ was then moved by the prescribed shifts and plotted with Y

in Figure 4.3. There is a close match between the two curves. One will note that the

40



open circles correspond to the same points on the target surface in both Y and Ŷ .

4.2 Discussion of the Sensing Scheme

In most cases, this processing scheme will work well. However, there are several

conditions under which there will be a greater amount of error in the measured

velocities than normally.

The first of these observations has to do with the geometry of the target. The

ideal targets are smooth and do not have corners – parabolas, circles, and so on.

For these kinds of targets, the error between the target profile as approximated by

straight lines and the actual profile is low, making the estimates of ∆x and ∆y very

accurate. However, sharp corners introduce some error because when a corner lies

between sensors, a straight line approximation cuts off the corner.

Another special geometry is the case in which the approaching object is completely

flat. In this case, matrix MTM is singular, and there is no unique solution for ∆x and

∆y. To make sure that the scheme always gives an answer, one can assume ∆x = 0

for this case and get an answer for ∆y. This fix will usually still yield reasonable

estimate of velocity.

Another point to be addressed concerns the spacing between the sensors and the

sampling rate. Both of these parameters must be chosen carefully to minimize error

introduced into ∆x and ∆y. In this processing scheme, if the actual displacement ∆x

is greater than half of the distance between sensors (l/2), the target profile becomes

extrapolated instead of interpolated. The estimates of ∆x and ∆y will then be

unreliable. However, if a very small time step is taken so that the motion between
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steps is very small, measurement errors in the sensors themselves will dominate the

calculations of ∆x and ∆y. In simulations, one foot sensor spacing and a 0.004 second

time step were used successfully.

4.3 Simulation

To examine particular scenarios for the short range sensing scheme, a simulation

program was developed. This simulation allows a large range of sensor layouts and

collision scenarios. A number of example test runs are investigated in Appendix C.

An example implementation of the sensor processing algorithm is also included

in Appendix C. The routine, written in Mathematica [22], takes two lists of sensor

inputs from parallel sensors evenly spaced on the auto at a set distance apart and a

set sensing range.

The test cases examined in the appendix represent several different accident situ-

ations that might occur for an auto equipped with a parallel sensing array down one

side of the car. Each situation was chosen so as to test a different angle of approach

and relative speed. For a summary of test runs, see Table 4.1.

Table 4.1: Sensing Scheme Example Runs

Case actual dx
dt
, ft/s actual dy

dt
, ft/s est. dx

dt
est. dy

dt
dx
dt

error dy
dt

error

0 -0.351 40.348 0.150 40.829 0.501 0.482
1 -40.036 39.751 -53.025 39.3116 -12.989 -0.4394
2 -1.950 38.689 -1.914 38.560 0.036 -0.129
3 12.602 8.585 17.239 9.810 4.637 1.225

Errors in the above simulations are due to the straight line approximation of target

profile shape between sensors. For example, consider Figure 4.4. The heavier line
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Figure 4.4: Example of linear approximation of target profile.

along the part of the side of the target’s surface is the profile assumed by a connection

of measured points by lines. In this example, the corner of the target falls between two

sensor beams, creating an discrepancy between the true and assumed profiles. When

the car moves a small amount during the instant between measurements, the assumed

shape will be different, since the sensors are cutting the corner at different pooints.

The best-fit displacements between the approximate profiles from two subsequent time

steps then do not match exactly the true displacements because of error introduced

by attempting to best-fit the cut-corner section of the profile.

4.4 Conclusions

Overall, the the sensing scheme appears to work well. Although the situations con-

sidered above are not an exhaustive study of this sensing scheme, they show several

important points about its performance. First, an average of perceived velocity over

several instants is more accurate than the instantaneous measured velocity. An av-
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erage over several time steps seems to smooth out errors created by the straight line

approximation of the target car’s profile between measured points. Second, the ve-

locity measured in the direction parallel to the sensing beams usually gives a more

accurate estimation than the velocity measured perpendicular to the beams.

In some situations, however, the system can break down and be unable to estimate

both components of relative velocity. The sensing scheme relies on the ability to pick

up some characteristic curve in the profile of the target vehicle. The scheme then

estimates the movement of the target over a small amount of time by estimating the

translation of that feature.

If a target is in view of less than three sensors, the scheme cannot operate normally.

Heuristically, the sensing scheme does not have enough information to identify a

feature on the target. For just one sensor, the matrix M in Section 4.1 is singular

and cannot be inverted to yield approach velocities. For two sensors, the matrix is

invertible, but always gives a zero result for the perceived velocity perpendicular to

the sensors. More testing is needed to see whether these cases are rare in practice or

would prove to be a liability.

Other instances can also result in a poor target velocity estimation. Even if the

target is in view of three or more sensors, the scheme will miscalculate velocity if a

feature is not visible. Take for example the scenario in Figure 4.5. The target is only

within the sensing range of three sensors at times t and t+1. Because of the geometry

of the the target auto, the three active sensors return the same output at both times

and therefore conclude not motion has taken place. The target has, however, moved

a substantial directions both parallel and perpendicular to the sensing beams.
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Figure 4.5: Example case where sensing scheme fails.
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Also important to the assessment of the value of this scheme is consideration of the

use of the information generated by it. Perhaps the device that will use the derived

position and velocities will only need to know these quantities roughly – then, this

algorithm would suffice. However, if velocities need to be estimated within strict

tolerances, another scheme might need to be considered.

The some problems may be remedied to an extent by placing sensors more densely

in the sensor array. When distance between measurement points is decreased, the

straight-line approximation of the target profile between measured points becomes

increasingly better. Likewise, the presence of more sensors decreases the likelihood

that the scheme will fail because of contact by less than three sensors.

Other processing schemes might be investigated. The emphasis on the current

scheme was to produce an algorithm that will have a closed-form answer and run

very rapidly. More accurate schemes may be developed, perhaps, by minimizing

the squared area between a nonlinear approximation of the target profile. Another

possibility might be a scheme that has preconceived expectations of the shape of the

target, or a scheme that builds up an idea of the total target profile by using data

from every reading to define the silhouette.
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Chapter 5

Restraint Optimization

5.1 Introduction

Creating an adequate pre-crash sensor only solves half the problem. To create a

system that effectively reduces injury, the best possible use must be made of the

extra lead time and information garnered by the sensors. Since pre-crash information

has never before been considered for uses other than automatic braking, the creation

of an optimal system of restraints necessarily involves an amount of original and

preliminary investigation.

The first, and somewhat insidious, question to be addressed is the question, ‘What

is optimal performance?’ Most normal engineering problems have fairly obvious per-

formance goals – often, some kind of H-norm on the system outputs and applied

control forces. There are obvious quantities that one would like to contain within an

acceptable range. For the problem at hand, however, the goal is the more conceptual

task of reducing injury.

How does one predict injury? Injuries are highly dependent upon the orientation,

point, and magnitude of force application. Injury can also vary drastically between

individual subjects that suffer very similar traumas due to individual physiologic
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differences.

How does one quantify injury? Upon pondering this question, one realizes that

any quantification of human injuries is destined to be difficult and highly arbitrary.

Is a broken leg worth more or less than a fractured pelvis? How many bruises does

it take to equal one healthy cut? Different parts of the body can be injured in a

multitude of different fashions and severities, all of which would have to be addressed

somehow.

How does one create an adequate dynamic model of a human being? The human

body is a very non-homogeneous structure with many articulations. For a general

impact model, a simple lumped-mass model may not be adequate.

In an attempt to address some of the above questions, anthropomorphic test

devices (crash dummies) have been created from the measurements of a large number

of human subjects [6] [16]. Although ATD’s are carefully sculpted to reflect the

physiological topology and mass of the measured constituency, the dummies only

may adequately reflect the shape and not dynamic character of the human body. In

practice, ATD crash data has only a rough correlation to injuries in humans.

The goal of a good modeler is to create the simplest model which can be adequately

correlated to empirical data. In this case, instrumented injury crashes with live

human subjects are unavailable for obvious reasons. In contrast, instrumented dummy

crashes are available but are of questionable worth (and still difficult to model). In

the restraint optimization problem, adherence to the usual practice of good modeling

is nearly impossible.

Perhaps one might decide that ATD collisions are adequate anyhow. In that case,
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Figure 5.1: Simplified collision model.

a complex finite element model of the auto interior and ATD may be required to

make a model that can be validated and used with confidence.

Rather than overpower the problem by producing a difficult and time consuming

model, exactly the opposite approach was taken. Accepting the inaccessibility of a

truly verified and validated crash model, a very simple model was created. The idea

of this model would be to glean an intuitive insight into the problem, rather than to

formulate a finalized design tool. From a simple model, the hope was that a paradigm

for future development could be discovered before an intricate model might be needed.

The model here considered was made to reflect only a general class of problems

and not to correspond directly to any one collision. Instead of a three dimensional

model, a one-dimensional approach was used. Rather than measure non-linear dy-

namic characteristics for both the occupant and auto interior, the inside of the auto

was modeled merely by linear springs and dampers, for simplicity’s sake. The occu-

pant was then represented by a single rigid mass. The restraints are reduced to a

generalized force acting upon the occupant.
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Figure 5.1 represents this collision model. M represents the auto’s occupant. f

represents the applied restraint forces. F represents the force impulse acting upon

the car during collision. On either side of the occupant is a spring-damper system

separated initially from the occupant by a gap.

By investigating this simple model, some fundamental performance results were

indeed discovered.

5.2 Passive Restraints

In the previous section, passenger restraints were modeled by a generalized force, f ,

as represented in Figure 5.1. One way to optimize this generalized force is to choose

f to be a control law of the form

f = f(x, ẋ, p1, . . . pn)

where x is the relative displacement between the occupant and the automobile, ẋ is the

derivative of x with respect to time, and p1, . . . pn and n parameters that characterize

the control law (e.g. stiffnesses, dampings, inertias). Then the parameters are chosen

such that some measure of performance is optimized for the expected class of system

inputs, F (t).

For the approach examined in this section, the form of the generalized force was

assumed to be a second set of springs, dampers, and gaps working in parallel with

the existing set. Because this control scheme uses only passive components (that is,

components that do not add energy to the system), this approach was designated

to be the passive restraint system. This form was meant to be a rough model of
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the standard occupant restraints – seat belts – which assume a similar form in this

paradigm.

Before, it was stated that restraint performance is difficult to quantify. Another

advantage of employing a very simple model is that relative performance of different

restraint strategies can be compared by the peak acceleration experienced by the

occupant mass during a give collision. All optimizations in this chapter will seek

to minimize the occupant peak acceleration (minimize the L∞ norm of occupant

acceleration).

The problem of optimizing the passive restraint model is an optimization problem

over six parameters – two stiffnesses, two dampings, and two gaps. For any particular

F (t), the L∞ norm is then merely a function of the six parameters. Given an F (t),

the parameters can be optimized using a standard nonlinear optimization procedure.

Specifically the equations of motion for the system are

ẍ+ C1(x, ẋ)/M +K1(x)/M − f = −F (t)/Mauto

where the spring-and-damper seat belt model of f is

f = −(K2(x)/M + C2(x, ẋ)/M)

The K’s and C’s are nonlinear functions of x because of the gaps:

C1(x, ẋ) = 0 g1,1 ≥ x ≥ g1,2

= c1,1ẋ x < g1,1

= c1,2ẋ x > g1,2

C2(x, ẋ) = 0 g2,1 ≥ x ≥ g2,2

= c2,1ẋ x < g2,1

= c2,2ẋ x > g2,2
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K1(x) = 0 g1,1 ≥ x ≥ g1,2

= k1,1x x < g1,1

= k1,2x x > g1,2

K2(x) = 0 g2,1 ≥ x ≥ g2,2

= k2,1x x < g2,1

= k2,2x x > g2,2

where c1’s, k1’s, and g1’s are parameters for the auto body and c2’s, k2’s, and g2’s are

parameters for the restraint system.

For the purposes of optimization, the above second-order ordinary differential

equation has to be integrated numerically. In this case, the equation was broken

down into a system of first-order equations

ẋ = v
v̇ = −1

M
(C1(x, v) + C2(x, v) +K1(x) +K2(x) +MF (t)/Mauto)

and discretized using the finite difference method

xk+1 = xk + ∆vk

vk+1 = vk − ∆
M

(C1(xk, vk) + C2(xk, vk) +K1(xk) +K2(xk) +MF (k∆)/Mauto)

where ∆ is the step size and k is the step number.

Rather than a norm on ẍ, the performance measure is a measure of the global

acceleration of the passenger. This measure is defined as

J∞(c2,1, c2,2, k2,1, k2,2, g2,1, g2,2) = max
t

(C1(x, ẋ) + C2(x, ẋ) +K1(x) +K2(x))/M

The decision was made to use a finite difference scheme rather than a Runga-

Kutta integration or Runga-Kutta integration with predictor-corrector because J∞

was found to have an acceptable level of error without the use of a more time-

consuming algorithm.

Typically, collision force impulses are of a roughly trapezoidal form. For purposes

of optimizing the six parameter system, several trapezoidal profiles were obtained.
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One was taken from an actual sled test done at the University of Virginia. [19] Others

were created to correspond roughly to those found in various literature sources. [4]

[17]

For all acceleration profiles considered there arose several general qualitative re-

sults. Firstly, in all cases, the only set of springs and dampers that affected the

peak acceleration were the ones first contacted during the collision. All subsequent

contacts resulted in accelerations that were less that the maximum. Secondly, the

optimum rattle space was zero inches of rattle space in all cases. Lastly, there was a

wide range of stiffness-damping parameters that was near-optimal.

As explained above, only two of the original six parameters were responsible for

determining the optimal performance (stiffness and damping of the restraints on the

side of the car where collision takes place). Examining several test cases, one can

see that two peak accelerations occur. A typical collision is illustrated in Figure 5.5.

One is due to force transmitted to the occupant by the spring and damper before

the collision. The second is the acceleration shock resulting from collision with the

car body. The optimal stiffness and damping result when the height of these peaks

are exactly equal. However one would have to know the exact energy and shape of

the collision impulse before the collision to determine the most optimal values. From

the graph of peak acceleration versus stiffness and damping (Figure 5.2), one can

see that it is best (and indeed, nearly optimal) to over-estimate the energy of the

collision and make the spring and damper harder than may be optimally necessary.

Maximum acceleration is very much more sensitive to underestimation of impact

energy. Heuristically, one can interpret this result as favoring the pre-impact peak over
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Figure 5.2: Peak acceleration versus stiffness and damping
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Figure 5.3: Example car body acceleration profile

the car body impact peak because the pre-impact peak is less sensitive to parameter

variations. This result seems to be general, regardless of the force impulse. For

additional examples, refer to Appendix D.

Included results are from a specific test case, crsh.dat, using an acceleration

history measured from a 22.5 mph collision. For this collision, the optimal stiffness

of 0 and optimal damping of 4771 N s/m resulted in a peak acceleration of 17.57 g’s

during the collision.

5.3 Best Case Restraints

An optimal solution for the restraints was found fairly easily when the restraints

were assumed to follow the passive restraints paradigm. However, the question that

then arises is the question of whether better performance can be obtained by starting

with a different control form from the beginning. That is, is there some other kind

of control law form, other than the above springs and dampers, that will give you

55



0.1 0.2 0.3 0.4 0.5
time, s

disp, m

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02
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Figure 5.5: Occupant acceleration
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much better performance than the optimized from of the springs and dampers? To

answer this question, a lower bound on J∞ was estimated by the use of a dynamic

programming procedure [2].

To find this bound, the problem is changed back to the generalized force form:

xk+1 = xk + ∆vk

vk+1 = vk − ∆
M

(C1(xk, vk) +K1(xk) − fk +MF (k∆)/Mauto)
J∞(f1, f2, . . . , fn) = maxk(C1(xk, vk) +K1(xk) − fk)/M

and the problem to find

min
f1,...,fn

max
k

(C1(xk, vk) +K1(xk) − fk)/M

Instead of an optimization on a space of six parameters, the problem is transformed

into the much more difficult optimization of control force f at n times (where n is

the number of steps in the simulation).

Note that any solution to this problem can only serve as a lower bound – not an

actual control law. The solution to the problem requires a priori knowledge of the

exact shape of the force impulse F (t), something which is never available in actuality.

The purpose here is only to have a yardstick by which to measure the performance

of other schemes.

To solve this problem, the program was treated as an exercise in dynamic pro-

gramming. The cost function J∞ was converted into the recurrence relation

Jk(xk, vk, fk) = max[|(C1(xk, vk)+K1(xk)−fk)/M |, Jk+1(xk+1(xk, vk, fk)), vk+1(xk, vk, fk)]

with the boundary condition

Jn = |(C1(xk, vk) +K1(xk))/M |
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now, denote

Uk = minf Jk(xk, vk, fk)
= minf{max[(C1(xk, vk) +K1(xk) + fk)/M, Jk+1(xk+1(xk, vk, fk)), vk+1(xk, vk, fk)]}

and let the f that minimizes Uk be known as f ∗
k (xk, vk, k).

Briefly, Uk and f ∗
k are solved for backwards from the boundary back to the first

step of the problem. At the first step of the problem, U1 fulfills the same conditions

as J∞. f ∗
k is the sequence of control forces that realizes J∞. A solution to the lower

bound on the restraint problem is then found on discretized sections of Uk and f ∗
k at

each time step proceeding back to the beginning of the problem. For specifics of the

numerical solution of the dynamic programming version of the restraint problem, see

Appendix E.

The main result of these solutions was that the lower bounds to the solution were

much lower than optimal passive restraints. For example in case crsh.dat, the lower

bound on occupant acceleration was only 8.77 g’s as opposed to the 17.57 g’s pulled

with the passive restraints (See comparison in Figure 5.6). This drastic improvement

in performance is due to the different method of restraint applied in the optimal case.

The solution for f ∗
k derived by the dynamic programming problem starts accelerating

the occupant at a constant rate as soon as the simulation begins, before there is really

even any contact. f ∗
k is then adjusted throughout the problem such that it opposes

the force applied by the doors just enough to maintain the same acceleration that it

prescribed at the beginning of the problem. Then, at the very end of the problem,

the acceleration slacks off.

From an intuitive perspective, the optimal solution is makes sense. During the
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Figure 5.6: Comparison of optimal active and passive acceleration

collision, the occupant has to go through a mandatory amount of acceleration such

that he will stay with the car. Since the boundary case knows the acceleration a

priori, the optimal solution is just a constant acceleration. The occupant ends up at

pretty much the same spot as he would in the passive restraint case (give or take an

inch), but his peak accelerations have been chopped off and dumped into what would

be times of lower acceleration in the passive restraint model.

5.4 Conclusions

From the results of the passive restraint case and the lower bounds case, one can draw

several important intuitive conclusions:

• There is no point in using a pre-crash sensor with a system such as the passive

restraint law. Near optimal performance for any fairly high speed collision can

be achieved by setting the restraint stiffnesses and dampings conservatively high

and letting the gap distances equal zero.
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• Much better performance can be affected by the use of active components in

the restraint system. The optimal solution f ∗
k employs forces that could never

come from springs and dampers. Although f ∗
k was derived by exact knowl-

edge of the F (t), it may be possible to achieve better performance through an

approximation derived by the pre-collision sensor outputs.

The drawback of the optimal solution is that it is intrusive, violating the initial

tenets of the study. To realize the optimal acceleration, some large forces would have

to be applied to the occupant before collision. Carefully controlled forcing as required

in the optimal solution could only be obtained by measures such as controlled air-bag

firings or anticipatory accelerations of the seat itself. In such instances, the driver

would have to be forced to lose control of the automobile, actually causing accidents

if a false-alarm situation were to occur. Therefore, this study concludes that the

best restraints in the collision model studied are stiff fixed-parameter restraints, since

improvements on performance imply unacceptable intrusive devices.

However, these conclusions must still be considered with the following reminder –

the entire crash model was a very crude and unvalidated representation of automobile

collisions. Any conclusions generated by the model do not necessarily apply to the

problem of automobile collisions due to the drastically more complicated nature of

actual collisions. Any results from the low-order model should be used for intuitive

reasons only.
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Chapter 6

Conclusions

The main accomplishment of this work was the development of a formal structure

with which to study the concept of pre-collision sensing.

Previous work was done without considering whether the assumptions made in

modeling the system were valid. An examination of that work shows that the simpli-

fications used were not necessarily true and led to poor performance.

A sensor configuration similar to that in existing literature was then considered.

The major change from previous work was that the objective was changed from

automatic braking to restraint optimization, and the collision warning law was to be

determined empirically by neural network methods. An examination of this system

pointed to the inherent uncertain nature of the system when the objective was to

predict collisions at times around one second in advance.

The frame of reference was then altered so that the sensors only scanned over a

short range. With this change, many uncertainties of the longer range system were

removed. In this environment, a pre-crash sensing system was derived and tested in

simulation with some success. Indeed, the short range perspective would seem to be

the most useful method with which to solve the pre-crash sensing problem.
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The problem of optimal passenger restraint during collisions was then considered.

Although an adequate model was difficult to come by due to the inherent nature of

the system, a rudimentary model was developed and tested. Work on this rough

model implied that the simple optimization of existing seatbelt restraints is not a

worthwhile application for pre-crash sensing.

Significant performance improvements might be affected by developing new re-

straint devices that could apply active forces upon the passengers. However, the

basic premise of this research was to study optimal passive restraints because of the

hazardous nature of active measures (e.g. automatic braking) in a false alarm sit-

uation. Any implementation of the sensing scheme developed herein as a trigger

for active restraint measures could only be undertaken if the false alarm rate was

established to be zero.

Several questions yet remain to be answered. The first of these questions is imple-

mentation of the short range sensing algorithm. Although the processing algorithm is

simple and easily implemented by digital signal processing hardware, existing sensor

technology might not be adequate to gather the required information. A survey of

existing short range ultrasonic, optical, and radar sensors must be undertaken in the

future. Possibly a new sensor will have to be developed that will work in conditions

of rain, cold, visual obscurity, and so on.

Secondly, the restraint optimization problem must be addressed in better detail.

A model that can be validated against experimental data must be developed so that

confidence can be put placed in computational studies. Then, mechanisms for the

application of active forces on the occupants need to be either identified or invented
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so that the benefits of pre-crash sensing might be garnered.
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Appendix A

Neural Network Overview

A.1 General Setup

A feed-forward neural network is one empirical method for deriving a functional

relationship between two sets of data. A schematic representation of a neural network

is contained in Figure A.1. Inputs feed into the input layer of network. At each

numbered node, all inputs are combined in a weighted summed. The output of each

node is some nonlinear function of the node’s weighted sum. The term feed forward

implies that each node receives input only from nodes on layers lower than itself so

that the network’s output can be determined by only one evaluation of each of the

nodes in the network.

Consider a network with n + 1 nodes, m + 1 inputs, and one output. Call the

output of the ith node zi. Let ai denote the weighted sum of all the inputs into the

ith node. For the networks used in this study,

ai = xTWix

where Wi is an upper triangular matrix of weighting values used in the weighted sum,
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Figure A.1: Schematic representation of a neural net.

and x is the vector

x = {1, z0, z1, z2, z3, . . . , zn}T

For a feed-forward network, all elements of Wi associated with nodes on the same

layer or in higher layers are always zero. If the node in question is on the input layer,

x is instead

x = {in0, in1, . . . , inm}T

The weighted sum ai is a complete quadratic in the inputs to the node. The output

of the ith node is

zi = arctan ai

The output of the entire network is evaluated by computing the output of each node

sequentially, starting from the nodes in the input layer and working upwards through
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the hidden and output layers.

This network configuration is a modification on the form typically found in [21]

and [15]. In these references, ai typically has the form

ai = wT
i x

where wi is a vector instead of a matrix. Activation ai is a linear function of the

inputs rather than a quadratic function. The quadratic function was used in this

study because it was found in practice to yield functional relationships with lower

error on the training data examples than networks using linear functions of the inputs.

In [8], it is proved that a network with a linear form for ai and an infinite number

of nodes in the hidden layer can identically represent any bounded functional rela-

tionship between inputs and outputs. This result is not surprising. Input nodes scale

possibly unbounded inputs onto finite range of values. The nodes on the hidden layer

then form a basis on the space of functions mapping Rm onto R, analogous to an in-

finite series of polynomials forming a basis in a Taylor expansion. Output nodes form

a weighted sum of these basis functions and scale the result onto a bounded range of

outputs. The proof in [8] is also sufficient to show the same result for the quadratic

form of ai, since the linear form is a special case where the weights associated with

all second-order terms are set to zero.

A.2 Training

With a finite number of hidden-layer nodes, the network will not be able to exactly

represent any functional relationship. However, the purpose of using the net in this
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instance is not to represent a previously known functional relationship but to derive

an approximation of some unknown functional relationship. By the adjustment of

the values in the W weighting matrices of the nodes, a low error approximation

relationship can be formed from known examples of the relationship such that the

function can be interpolated between known points. This task is exactly a nonlinear

regression.

The usual process for training a neural network is known as backpropagation. This

process is described in detail in references [21] and [15]. This process is a recursive

form of gradient descent optimization. Weights leading into the input nodes are set

a priori so that the inputs from the training dataset are scaled, for the case of the

arctan function, on a range of -1 to 1. All other network weights are initially set

at some small initial values. In this study, initial weights were chose randomly on

[−1, 1]. The process proceeds as follows.

1. One example of the input-output relationship is taken at random from the

collection of data. The output of the network is evaluated using the current

values of weight, and an error, e is computed that is the squared difference

between the desired output and the actual output.

2. Using the chain rule of partial derivatives, the partial derivative of e with re-

spect to any element in the weighting matrix of the output node is calculated.

Through continued use of the chain rule, the partial derivatives of e with respect

to a in the hidden layer nodes is computed.

3. Again using the chain rule, the derivatives of e with respect to the weights
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leading into the hidden layer nodes are computed.

4. Each non-zero value of the weighting matrices associated with hidden and out-

put nodes are then modified by

Wi(new) = Wi(old) − δ ∂e/∂Wi(old)

where δ is some small arbitrary positive number.

5. Repeat from step (1) until e is acceptably small for some arbitrary number of

iterations of the process.

A.3 Considerations for Crash Prediction

To predict a collision, a set of sensor measurements is to be mapped to an output of

either a 1, denoting an impending collision, or a -1, denoting no collision. However,

since the functional relationship is not known a priori, it is not obvious what set

of sensor measurements are necessary such that an adequate functional relationship

between sensors and collisions will exist. Many configurations of network inputs might

need to be attempted before a suitable relationship reveals itself, and no suitable

functional relationship is guaranteed to exist for a given physical implementation of

sensors.

Compounding the problem of not knowing what inputs to give the neural network

is the problem of what area of space to take those inputs over. Since the neural

network is basically a high-dimensional curve fit, the network could can reflect a

functional relationship interpolated between known datapoints. However, the perfor-

mance of the network in regions of the input space where datapoints have not been
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taken is unknown and of no value for predicting collisions.

Another consideration is the problem of obtaining data with which to train the

network. For a collision prediction problem, the physical process of data collection

would be to equip a large number of autos with a given sensor configuration. These

cars would then be driven over a large range of driving conditions, and some would

eventually have collisions. This data could then be used to train the network. Such an

approach would be costly in both time and money, and since no functional relationship

can be guaranteed for any physical array of sensors using this empirical approach, no

network valuable for prediciting collisions could be assured. A dataset might be

derived by simulation, but without knowledge of a functional relationship or a large

amount of crash data, no confidence can be had that the relationship derived from

model training sets will have any correlation to actual driving situations.
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Appendix B

Neural Net Simulation Data

B.1 Case 1

training conditions: 1 obstacle vehicle and no roadside obstacles. Vehicle speeds

between 34 and 45 MPH.

evaluation conditions: 1 obstacle vehicle and no roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.

sensors: 3 at -30◦, 0◦, and 30◦. subtended angle = 4◦ for each and range = 300 feet.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 71 24 17 0.132 sec
1000 0.40 68 27 22 0.168 sec
1000 0.20 62 19 15 0.153 sec
1000 0.00 52 42 29 0.190 sec
1000 -0.20 58 50 34 0.180 sec
1000 -0.40 67 92 53 0.259 sec
1000 -0.60 72 106 59 0.290 sec
1000 -0.80 53 175 46 0.377 sec
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B.2 Case 2

training conditions: 1 obstacle vehicle and no roadside obstacles. Vehicle speeds

between 34 and 45 MPH.

evaluation conditions: 1 obstacle vehicle and no roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.

sensors: 3 at -30◦, 0◦, and 30◦. subtended angle = 30◦ for each and range = 300

feet.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 55 73 42 0.375 sec
1000 0.40 60 75 56 0.437 sec
1000 0.20 20 104 62 0.467 sec
1000 0.00 60 114 55 0.515 sec
1000 -0.20 60 142 55 0.578 sec
1000 -0.40 58 149 54 0.551 sec
1000 -0.60 67 283 64 0.592 sec
1000 -0.80 57 589 56 0.720 sec
1000 -0.90 75 930 75 0.819 sec

B.3 Case 3

training conditions: 1 obstacle vehicle and no roadside obstacles. Vehicle speeds

between 34 and 45 MPH.

evaluation conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.
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sensors: 3 at -30◦, 0◦, and 30◦. subtended angle = 30◦ for each and range = 300

feet.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.40 123 2045 85 0.615 sec
1000 0.20 105 2162 73 0.762 sec
1000 0.00 123 2214 94 0.745 sec
1000 -0.20 104 2500 79 0.722 sec
1000 -0.40 120 2626 93 0.990 sec
1000 -0.60 118 2767 94 0.978 sec
1000 -0.90 125 3970 121 1.35 sec

B.4 Case 4

training conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.

evaluation conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.

sensors: 3 at -30◦, 0◦, and 30◦. subtended angle = 30◦ for each and range = 300

feet.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 137 211 96 0.309 sec
1000 0.40 129 292 103 0.338 sec
1000 0.20 113 324 94 0.411 sec
1000 0.00 116 403 95 0.436 sec
1000 -0.20 124 483 109 0.516 sec
1000 -0.40 116 577 106 0.543 sec
1000 -0.60 108 778 101 0.621 sec
1000 -0.80 104 1133 93 0.739 sec
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B.5 Case 5

training conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet. Small neural net configuration.

evaluation conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.

sensor: Scanning radar with 300 foot sensitivity range.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 73 157 60 0.683 sec
1000 0.40 73 172 56 0.740 sec
1000 0.20 63 192 54 0.744 sec
1000 0.00 72 215 68 0.774 sec
1000 -0.20 75 241 69 0.757 sec
1000 -0.40 79 266 77 0.742 sec
1000 -0.60 65 296 65 0.731 sec
1000 -0.80 70 364 70 0.901 sec

B.6 Case 6

training conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet. Large neural net configuration.

evaluation conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet.
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sensor: Scanning radar with 300 foot sensitivity range.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 71 85 16 0.444 sec
1000 0.40 63 140 25 0.454 sec
1000 0.20 87 176 39 0.541 sec
1000 0.00 72 200 38 0.603 sec
1000 -0.20 72 217 39 0.615 sec
1000 -0.40 82 268 51 0.741 sec
1000 -0.60 71 316 45 0.742 sec
1000 -0.80 70 630 55 0.914 sec

B.7 Case 7

training conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet. Small neural net configuration.

evaluation conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet. Driving algorithm modified to include acceleration and deceler-

ation.

sensor: Scanning radar with 300 foot sensitivity range.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 6 82 1 0.85 sec
1000 0.40 4 120 1 0.60 sec
1000 0.20 5 157 0 –
1000 0.00 5 203 1 0.35 sec
1000 -0.20 8 235 0 –
1000 -0.40 10 305 3 0.21 sec
1000 -0.60 4 427 2 0.10 sec
1000 -0.80 4 595 3 0.43 sec
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B.8 Case 8

evaluation conditions: 1 obstacle vehicle and 10 roadside obstacles. Vehicle speeds

between 34 and 45 MPH. Range of roadside obstacles from roadside = 30 to 70

feet. Driving algorithm modified to increase driver anticipation.

sensor: Scanning radar with 300 foot sensitivity range.

runs threshold collisions alarms collisions warning
occurred generated predicted interval

1000 0.60 30 84 25 0.706 sec
1000 0.40 32 77 24 0.581 sec
1000 0.20 33 93 28 0.707 sec
1000 0.00 33 126 25 0.790 sec
1000 -0.20 38 132 33 0.708 sec
1000 -0.40 29 153 25 0.718 sec
1000 -0.60 40 181 34 0.790 sec
1000 -0.80 34 284 32 0.859 sec
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Appendix C

Short-Range Simulation

C.1 Sample Sensor Processor

Code written in Mathematica [22].

BeginPackage["Bump‘"]

BumpIt::usage = "BumpIt[list1,list2,delta,limit]"

Begin["‘Private‘"]

BumpIt[l1_,l2_,d_,limit_]:=
Module[{a,b,m,k,n,flag,ans,hook},
a={}; b={};
n=Length[l1];
For[k=1,k<n,k++,

flag=1;
If[ (l2[[k+1]]>=limit) || (l2[[k]]>=limit) , flag=0];
If[ (l1[[k+1]]>=limit) || (l1[[k]]>=limit) , flag=0];
If[ flag==1,

a=Append[a,{2(l2[[k+1]]-l2[[k]]),-2 d}];
b=Append[b,{l1[[k]]-l2[[k]]+l1[[k+1]]-l2[[k+1]]}];
a=Append[a,{2(l1[[k+1]]-l1[[k]]),-2 d}];
b=Append[b,{l1[[k]]-l2[[k]]+l1[[k+1]]-l2[[k+1]]}];
hook=l1[k]-l2[k]; ]

];
If[Length[b]==0,ans=Null,

m=Transpose[a] . a;
If[Length[SingularValues[m][[2]]]<2,

ans={0,hook},
ans=Inverse[m] . Transpose[a] . b ]; ];

ans
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]

End[ ]
EndPackage[ ]

C.2 Case 0
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AUTO 0

AUTO 1

target relative ∂x/∂t, fps relative ∂y/∂t, fps

AUTO 1 -0.351 40.348

Sensor Array Performance

• Measured Mean Vx = 0.149876 fps

• Measured Mean Vy = 40.8296 fps
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Figure C.1: Case 0 - Error in predicted approach angle

-0.04 -0.03 -0.02 -0.01
sec

-0.2

0.2

0.4

0.6

0.8

ft/s

Figure C.2: Case 0 - Error in predicted approach velocity magnitude
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C.3 Case 1
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AUTO 0

AUTO 1

target relative ∂x/∂t, fps relative ∂y/∂t, fps

AUTO 1 -40.036 39.751

Sensor Array Performance

• Measured Mean Vx = -53.025 fps

• Measured Mean Vy = 39.3116 fps
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Figure C.3: Case 1 - Error in predicted approach angle
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Figure C.4: Case 1 - Error in predicted approach velocity magnitude

83



C.4 Case 2
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AUTO 0

AUTO 1

target relative ∂x/∂t, fps relative ∂y/∂t, fps

AUTO 1 -1.950 38.689

Sensor Array Performance

• Measured Mean Vx = -1.91358 fps

• Measured Mean Vy = 38.5598 fps
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Figure C.5: Case 2 - Error in predicted approach angle
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Figure C.6: Case 2 - Error in predicted approach velocity magnitude
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C.5 Case 3
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

�����������
�������

�����
�����

�����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
�����
�����
�����
��������

��������������
��������������������������������������������������������������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
������

������
�����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
�����
����
����
����
������
�������
����������

����������
����������������������

����������������������
����������������������

����������������������
����������������������

����������������������
���������

AUTO 0

AUTO 1

target relative ∂x/∂t, fps relative ∂y/∂t, fps

AUTO 1 12.602 8.585

Sensor Array Performance

• Measured Mean Vx = 17.2392 fps

• Measured Mean Vy = 9.8098 fps
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Figure C.7: Case 3 - Error in predicted approach angle
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Figure C.8: Case 3 - Error in predicted approach velocity magnitude
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Appendix D

Passive Restraint System –
parameter optimizations

D.1 force profile – crsh.dat

D.2 force profile – impulse.dat

D.3 force profile – trace1.dat

D.4 force profile – trace2.dat
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Figure D.1: crsh.dat
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Figure D.2: acceleration versus K and C
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Figure D.3: impulse.dat
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Figure D.4: acceleration versus K and C
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Figure D.5: trace1.dat
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Figure D.6: acceleration versus K and C
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Figure D.7: trace2.dat
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Figure D.8: acceleration versus K and C
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Appendix E

Numerical solution of dynamic
programming problems

The conversion of an optimal control problem into a dynamic programming problem

has been previously covered in this text. Once this conversion has been done, there

are the following structures:

state vector

Xk =

{
xk

vk

}

system equations

G(Xk, fk) =

{
xk+1

vk+1

}
=


 ∆vk + xk

vk − ∆
M

(C1(xk, vk) +K1(xk) − fk +MF (k∆)/Mauto)




instantaneous cost

Ak(Xk, f, k) =
∣∣∣∣ 1

M
(C1(xk, vk) +K1(xk) − fk

∣∣∣∣

recurrence relation

Uk(Xk) = min
f

[max{Ak(Xk, fk), Uk+1(G(Xk, fk))}]

optimal control vector f ∗
k = fk that minimizes Uk
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boundary condition

Jn = |(C1(xk, vk) +K1(xk))/M |

Since f ∗
k is possibly not unique, f ∗

k was arbitrarily chosen to be the smallest

acceptable candidate for f ∗
k on the interval of fk tested. Since the system equations

are nonlinear, and Uk is an infinity norm, any analytic solutions for f ∗ and U would

are very difficult, if not impossible, to obtain. A numerical solution for f ∗ and U

over some finite domain propagated backwards from step n to step 1 is the way to

proceed.

Most references on dynamic programming simply say to represent a finite domain

with a lattice of nodal points that define interpolation functions over the solution

domain. Then the solution proceeds backwards by solving for Uk and f ∗
k only on the

lattice points, using an interpolation on the surface Uk+1. [2]

However, several important, and rather interesting, issues are left unmentioned

(and unresolved) which need to be considered before a successful solution may be

obtained. These issues are:

• What are the bounds of the solution domain?

• How can one be sure that the solution of Uk is not in error due to extrapolations

on Uk+1 beyond the defined domain?

• How much error is introduced by the discretization of the solution?

On what domain does one solve the problem?
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In this case, the only desired answer was the solution that originated at k = 1 at

the point {x, v} = {0, 0} (the occupant’s nominal starting position). A priori, one

does not know what portion of the domain that the solution for {x, v} = {0, 0} will

travel. Indeed, that trajectory is actually the desired solution.

In some cases, there may be some hard physical bounds on the states. Then, one

would just limit the solution domain to within those bounds. In this case, however,

there are no obvious limits on the solution domain. It may be that the only way to

solve the problem is as an iterative process. First, choose boundaries that intuitively

seem to contain the solution trajectory. After the problem is solved on the initial

domain, test the solution trajectory to see if it goes outside the known domain. If so,

widen the solution domain and repeat the process.

How can one be sure that solutions are not in error due to over-reliance on ex-

trapolation?

One does not want a solution that is based on extrapolations of Uk+1 surfaces.

Extrapolation could lead arbitrarily large error. As an aside and a graphic illustration

of extrapolation error, consider the following example. The function

z = | sin(x2 + y2)1/2|

was considered over the region

||x, y||1 ≤ 5

The function is represented by the same interpolation functions used in the solution of

the dynamic programming problem. As one can see in Figure E.1 the representation

is very good over the defined domain, but the quality deteriorates rapidly outside of
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Figure E.1: When good functions go bad.

the domain boundaries.

By careful programming, one might change the definition of the problem domain

on every timestep to make sure that every point on the cost surface was formed

from an interpolation of the Uk+1 cost surface. Such an approach would be the

rigorous way to program the problem. In this case, however, it was hoped that by

choosing a suitably large enough solution domain, only the edges might be polluted

by extrapolation. In addition, the cost surface of this problem turned out to be

forgiving in that small extrapolations probably would not produce much error – the

cost surfaces were all quite smooth in the regions near where the solution lay.

How much error is introduced by a discretized representation of the solution?

In this particular case, this question is especially important. Because of the dis-

continuous nature of the forces applied by the car body, there was bound to be some

96



-4
-2

0
2

4

v, m/s
-0.1

0

0.1

x, m
0

20

40

60

g

-4
-2

0
2

4

v, m/s
-0.1

0

0.1

x, m
0

20

40

0

Figure E.2: Cost surface at k = 1.

error incurred by the use of continuous interpolation functions. The question is can

a believable answer still be obtained, even with error incurred by the discretization

scheme. In this case, the answer was yes, even though discretization error did have a

noticeable effect.

Figure E.2 represents the predicted cost of each initial position. For the initial

position x, v = 0, 0, the cost surface predicts a final cost of 8.77 g’s. Is this cost to

be believed? The solution is to walk through the set of force solution to determine

the set of forces that yields this conclusion. Figure E.3 is the displacement history

of the solution. Figure E.4 is the acceleration history of the solution. Figure E.5

is the control history of the solution. Looking at Figure E.4, one can see that the

8.77 g acceleration is generated starting at the beginning of the problem. However,

a larger acceleration spike is generated later on in the solution when the solution
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Figure E.4: Acceleration history.
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Figure E.5: Force history solution.

crosses over the discontinuity. To avoid a spike at the discontinuity, the force has

to be discontinuous as well. From Figure E.5, one can see that although the force

changes very rapidly at the discontinuity, it starts the change before the discontinuity

is hit at x = −0.15 and does not complete the step until well after this point.

Although a discontinuous step is prescribed by the true solution, the discretized

solution cannot adequately reflect that step. The surface is approximated by functions

of the form

z = ax+ by + cxy + d

which is an interpolation function for a rectangular domain. By the discretization

used in this problem, the discontinuity lies directly in the middle of one set of the

rectangular elements.

If the discretization were much finer, it is hypothesized that the transition over
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Figure E.6: Corrected force history.

the discontinuity could be taken in such a way that 8.77 max g could be realized by

the program. 8.77 max g is a realizable result – by altering the applied forces by hand

such that the discontinuity is passed over smoothly, the 8.77 g run is achieved. See

figures E, E.7, E.8.

Errors were unquestionably incurred by the above mechanisms. However, the

answers produced by the dynamic programming method for the optimal restraint

problem are good ones. If not necessarily the absolute optimum, they are definitely

close to the best performance obtainable.
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Figure E.7: Occupant acceleration from corrected force.
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Figure E.8: Occupant displacement from corrected force.
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