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ABSTRACT

Magnetostrictive materials often rely on magnetic fields generated through the use of a solenoidal coil. However,
the field-generating coil also acts as a source of heat causing thermally induced strains in the magnetostrictive drive
element. To insure that the useful magnetostrictive strains are large in comparison with the thermally induced
strains, the solenoid may be optimized. This paper presents a simple one dimensional (1-D) magnetic model useful
for predicting the magnetic field inside the magnetostrictive drive rod. The advantage of this model is that it can be
evaluated very quickly, making it well suited for use in optimization algorithms. A figure of merit is presented that
weighs the energy stored in the coil against the power that must be dissipated to maintain the field. With the magnetic
model and cost function, the solenoid may be sized to maximize the volume averaged field in the magnetostrictive
element per unit of volume averaged dissipated heat in the solenoidal coil. While previous work addressed field/power
optimization at the center of air-cored solenoids, the work presented here considers optimization of the average field
along a rod of permeable magnetostrictive material. The results indicate that coil quality decreases rapidly if the
coil is thinner than optimal, but decreases rather slowly for a thicker than optimal coil.

1. INTRODUCTION
Magnetostrictive materials produce strain in response to an applied magnetic field. A typical geometry for a mag-
netostrictive actuator consists of a magnetostrictive drive rod encircled by a solenoidal coil. The coil serves not
only as a source of magnetomotive force, but also as a source of heat. As an actuator, successful application of a
magnetostrictive material relies on the ability to control the mechanical strain through control of the magnetization
of the material. The ability to control the magnetization of the material is compromised by the effects of heat. This
compromise occurs due to thermal expansion and the pyromagnetic effect. For this reason, coil designs are sought
which maximize the volume integral of the magnetic field in the magnetostrictive material while minimizing the
volume integral of the heat dissipated by the solenoid which provides the field.

Optimization of air-cored solenoids is well-documented.1–3 In an air-cored solenoid, the solution for the magnetic
field along the centerline is fairly straightforward. Although the solution is somewhat complicated, the closed-form
analytical solution relies on two important assumptions;

1. There is only an axial component of magnetic field along the centerline (all other components cancel).

2. The relative permeability of the core is unity (the core is not comprised of a magnetizable material).

Due to the construction of solenoidal coils, the first assumption above is quite acceptable. Because magnetostric-
tive materials are often utilized in the form of a rod with length that is many times greater than the diameter, the
centerline field very closely approximates the axial field along the rod. However, since magnetostrictive materials are
more magnetically permeable than air, the second assumption in not employed in the present work.

The present paper seeks to optimize coil geometry so as to reduce the required power dissipation while taking
into account the effects of the permeable magnetostrictive materials on the magnetic field. This optimization is
possible through the use of a volume integral method to rapidly solve for the field in the magnetostrictive material,
in combination with a novel figure of merit that balances the energy in the rod with the power required to maintain
the field. The result is that the optimal coil shapes in the presence of the magnetostrictive material are somewhat
different that the optimal air-cored solenoid shapes previously presented in the literature.
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Figure 1. Anhysteretic Strain Surface for FSZM Terfenol-D

2. MAGNETOSTRICTIVE MATERIALS

The size and shape of a magnetostrictive material changes when its state of magnetization is altered. The state of
magnetization may be altered by stress, magnetic field, or by changing the temperature (or thermal field). Considering
only longitudinal contributions to the thermodynamic potential of a 1-dimensional (1-D) adiabatic magnetostrictive
material, the following (vector) constitutive relation may be written;
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Written in terms of the system variables;
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Where the thermodynamic potential function G is the Gibbs free energy and U is the internal energy.

G = U − σε − HB − TS (3)

The variable ε is strain, B is magnetic induction, S is entropy per initial volume, σ is stress, H is magnetic field,
and T is absolute temperature. The parameter Y is the elastic modulus, d33 is the piezomagnetic coefficient, α is
the thermal expansion coefficient, µ is the magnetic permeability, i is the pyromagnetic coefficient, and C is the heat
capacity per initial volume. Carman and Mitrovic4 have also presented this form of the vector constitutive relations.

Shown in Figures 1 and 2 are surfaces representing the anhysteretic isothermal strain and magnetic induction as
functions of stress and magnetic field. The dimension representing temperature is not shown. Engineering actuators
are often designed to operate in the linear portions of strain and induction surfaces similar to these.

Consideration of equation (2) indicates that the magnetic induction of magnetostrictive materials depends on the
state of stress, field, and temperature. Generally, an increase in temperature causes the induction of these materials
to decrease. Since temperature effects occur over relatively long time periods, this work will consider isothermal
operation, with the intent of minimizing the heat rejected from the solenoid.
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Figure 2. Anhysteretic Induction Surface for FSZM Terfenol-D

3. ENGINEERING APPLICATION OF MAGNETOSTRICTIVE MATERIALS

In recent years, magnetostrictive materials have been designed into useful actuators.5–10 This section will focus on
the general design methodology and how this relates to the present problem formulation.

In positioning applications, where the deleterious effects of rejected heat are critical, the actuators are generally
designed to operate at constant steady-state stress. At constant temperature, equation (2) shows that the magnetic
induction of the magnetostrictive material depends only on the field in the magnetostrictive material. This allows
the magnetostrictive material to be treated as a general magnetizable solid. The method to be presented may be
easily extended to include temperature and stress effects. However, to enhance clarity and provide a design tool for
a broad range of applications, temperature and stress effects will be neglected in this paper.

In the design of magnetostrictive actuators, the required material strain and stiffness govern the size of the
magnetostrictive drive rod. For the room temperature magnetostrictive material Terfenol-D, the linear region of the
strain-field curve at low stresses (<14MPa) is approximately 850ppm. This means that 1.176mm of material length
is required for each micron of total strain. Of course greater strains, up to 1600ppm, may be achieved, but very large
thermal penalties result.

The stiffness of the magnetostrictive drive rod is designed through selection of the ratio of length to area.

Krod =
Y Arod

lrod
(4)

Since the required strain, possibly in conjunction with a stroke amplifier, sets the length of the rod lrod, equa-
tion (4) shows that the area of the rod Arod must be selected to achieve the desired stiffness. The rod area Arod in
conjunction with manufacturing tolerances, sets the coil inside diameter IDcoil. The method for optimizing the coil
geometry may take as an input IDcoil and provide as outputs the coil outer diameter ODcoil, and the length of the
coil lcoil, which may be longer or shorter than the length of the rod lrod.

4. AIR-CORED, CONSTANT CURRENT DENSITY SOLENOIDS

The work of Montgomery1 and others2,3 focused on developing relationships for air-cored solenoids. Specifically, the
work considered analytical and graphical methods for determining the field at various points within solenoids.

Beginning with the Biot-Savart law, expressions for the solenoid central field were derived. Biot-Savart Law
prescribes the magnetic field resulting from a “point current” in free space. The magnetic field for an entire coil can
then be computed by integrating the magnetic field from each differential piece of current over the entire volume of
the coil. Specifically, the Biot-Savart Law is:

dHc =
IdS × r̂

4π R · R (5)
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Figure 3. Current loop producing magnetic field

where dHc represents the differential contribution of a current I to the field produced by the coil of interest. The
vector R connects the point at which the current is located to the observer’s location.

Equation (5) can be integrated around a loop of wire to obtain the magnetic field of the loop. Such a loop is
pictured in Figure 3. The magnetic field of a loop can be integrated to yield the field anywhere with respect to the
loop, but this expression is rather complicated.11 Along the centerline of the loop, however, the only component of
the magnetic field is directed axially; all other field components integrate to zero. The field intensity, H , along the
axis is then:

Hloop(z) =
Ia2

2(a2 + z2)3/2
(6)

where a denotes the radius of the loop, z denotes the distance from the center of the loop, and I denotes the current
in the loop.

The central field of such a loop H0 may be written:

Hloop(0) = H0 =
I

2a
(7)

And equation (6) may be written as;

Hloop(z) = H0
a3

(a2 + z2)3/2
(8)

Integrating the field produced by a solenoidal current sheet in the axial directions, the field at the center of the
current sheet solenoid may be represented by the following.

H0 =
NIβ

(1 + β2)1/2lcoil
(9)

Where NI is the magnetomotive force provided by the current sheet.

Montgomery scaled the coil outer radius and half-length by the coil inner radius. In this work, the ratio of coil
outer radius to inner radius (or ODcoil

IDcoil
) is defined as alpha α. The ratio of the coil half-length to the inner radius (or

lcoil

IDcoil
) is defined as beta β.

Integration in the radial direction may be performed to derive a central field expression for a finite thickness
solenoid of uniform current density:
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The coil dissipated power may be written as;

P = ρJ2

∫
dvcoil (11)

where ρ in the coil resistivity, and vcoil is the coil volume.

From equations (10) and (11), an expression for the central field in terms of the dissipated power may be written
in terms of a geometry dependent “Fabry factor.”

Ho = G(α, β)
(

2P

ρIDcoil

)1/2

(12)

where the “Fabry factor” is defined as follows.

G(α, β) =
[

β

2πβ(α2 − 1)

]1/2

ln
α + (α2 + β2)1/2

1 + (1 + β2)1/2
(13)

The “Fabry factor” may be plotted in the α−β plane. The resulting contours define coils for which a given amount
of field is generated per unit of power. By maximizing the “Fabry factor,” a coil geometry may be determined that
optimizes the central field of the air-cored solenoid per unit of dissipated power. This value occurs at (α, β) = (3, 2).
In other words, ODcoil should be 3 times IDcoil, while the lcoil should be 2 times IDcoil. This results in a short and
stout coil.

It is the objective of this paper to solve a substantially similar problem with the following two exceptions.

1. The core of the solenoid optimized in this paper has relative permeability greater than unity.

2. The volume averaged field in the magnetostrictive core per volume averaged dissipated heat from the solenoid
will be maximized.

5. MAGNETIC FIELD DUE TO A CURRENT CARRYING SOLENOID AND A
MAGNETIZED SOLID

Computing the axial field of a thin coil is merely the integration of the fields of many differential loops. The case of
an infinitely thin coil is useful, in the sense that a cylindrical permanent magnet is equivalent to a volume of air the
same size as the magnet surrounded by a sheet of currents. In this case, the current carried by any one differential
loop can be represented as M dzo where dzo is a differential unit of length axially along the coil, and m is the density
of the surface currents. This arrangement is pictured in Figure 4. The convention adopted here is that z = 0 at the
center of the coil. The length of the coil is lcoil.

The integration to find the axial field of the thin coil is:

Hmagnet(z) =
∫ lcoil/2

−lcoil/2

a2m dzo

2(a2 + (z − zo)2)3/2
(14)

which has the solution

Hmagnet(z) =
m(lcoil − 2z)√

4a2 + (lcoil − 2z)2
+

m(lcoil + 2z)√
4a2 + (lcoil + 2z)2

(15)
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Figure 4. A current sheet surrounding a circular cylinder

To consider a coil of non-zero thickness, equation (15) can be integrated again from the inner radius to the outer
radius of the coil to yield the axial magnetic field due to an entire solenoid. If J is the current density carried by the
coil, the axial field produced by the coil is:

Hcoil(z) =
(

J(lcoil + 2z)
4

)
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With equation (16), the field intensity produced along the axis of th coil in air is in an analytical form.

Though equation (15) only describes the magnetic field of the coil in free space, it can be used as the basis for
determining the magnetic field when a magnetostrictive core is present. This method is very similar to the Volume
Integral method of solving for magnetic fields in inhomogeneous media as described in Ref. 12. The key to this method
is the realization that a piece of material of non-unit relative permeability can be represented as an equivalent volume
of permanent magnet, having some prescribed magnetization and unit permeability. Mathematically, this equivalence
is represented by:

B = µH = µo(H + M) (17)

Magnetization M only exists in volumes that have non-unit permeability. Re-arranging, one can write:

(µr − 1)H = M (18)

where µr is the relative permeability of the material. Defining magnetic susceptibility X as

X = µr − 1 (19)

magnetization can be written in terms of the field intensity H as:

M = XH (20)

If the magnetic field is composed of a coil and some magnetized volume, all in free space, the flux density is the
sum of a component of flux density from the coil, and a component caused by the magnetized volume. Denoting Hc

as the component of the flux intensity from the coil, and Hm the component from the magnetized volume,

B = µo(Hc + Hm) (21)



Combining equations (17) and (21) yields:

µo(Hc + Hm) = µo(H + M)

Solving for M and substituting from (20) gives the magnetization at any point as a function of the free-space magnetic
field of the coil, and the free space field of the magnetized volume:

M =
( X

1 + X
)

(Hc + Hm) (22)

Equation (22) is the mechanism for solving the field inside the magnetostrictive drive rod. Since the drive rod lies
on the axis of the coil, the Hc component can be obtained via (16). To obtain Hm, a reasonable approximation is to
break the magnetostrictive rod into a number of segments, each of which has a constant (but unknown) magnetization.
Equation (15) can then be used to obtain the axial field from any particular segment of the rod.

Equation (22) can be used to describe the magnetization at the center of any particular segment of the rod:

M(zi) =
( X

1 + X
) 

Hcoil(zi) +
n∑

j=1

M(zj)hmagnet(zi − zj)


 ; i = 1 . . . n (23)

where hmagnet is the magnetic field from a uniformly magnetized cylinder per unit of magnetization, obtained by
dividing Hmagnet by m:

hmagnet(z) =
l − 2z√

4a2 + (l − 2z)2
+

l + 2z√
4a2 + (l + 2z)2

(24)

and where n represents the number of segments in the rod. Since equation (23) can be written for each segment in
the rod, this equation represents n linear equations for n unknown Mi; these equations can be solved to yield the
magnetization of every segment in the rod. Once the magnetization is known, the field in the rod is available simply
by dividing the magnetization by X .

The power of this method over, for example, the finite element method, is that only the rod of magnetostrictive
material need be discretized. There is no need to solve for the field in the air as well (although the field in the air
can be obtained with the present method by Biot-Savart once the magnetization is known). Breaking the rod into
100 segments is often more than enough to accurately solve for the field intensity, and the problem solution takes
fractions of a second to solve. Many different coil geometries can be investigated automatically and in a short amount
of time.

6. DEFINITION OF COIL OPTIMALITY

To optimize coil geometry, some definition of optimality must be developed. In section 4, the “Fabry factor” was
used to represent an optimal solenoid geometry. This optimization considered maximization of the central field of
an air-cored solenoid per unit of dissipated power.

In the present case, however, the problem is a bit more subtle. Not only the center of the coil is of interest, but H
along the entire length of the rod is important. In this work, where the room temperature magnetostrictor Terfenol-D
has been applied, the metric for quantifying coil performance will be denoted by the Terfenol time constant:

τterf =
(1/2)µH2

avg vterf

ρvcoilJ2
(25)

Which is loosely interpreted as the magnetic field energy stored in the Terfenol-D drive rod divided by the power
required to produce this field. This figure of merit has units of seconds.

A “good” coil should have a high τterf . Optimizing τterf implies that the highest average field is achieved in the
Terfenol-D for a given amount of loss in the coil.



7. OPTIMIZATION OF COIL GEOMETRY

With a theoretical foundation for computing the field in the magnetostrictive core and a definition of coil optimality
defined, a coil geometry may be optimized. To perform this task, a short computer program was written in C which
sets up and solves equation (23) for a coil and a magnetostrictive rod of prescribed dimensions. The outputs of the
program are the dimensions of the coil, the associated Terfenol time constant τterf , and a profile of H along the rod
in units of Amp/Meter.

Optimal coil geometries were computed for three rod sizes of interest in the present work. All Terfenol-D rods
considered are 15 mm long and have a relative permeability of 8. The outer diameters considered were 1.5, 2, and
2.5 mm. The rods are assumed to be centrally positioned in the axial direction with respect to the coil (no axial
offset).
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Figure 5. Coil Optimization for a 2 mm diameter Terfenol-D rod

For the optimization, the coil inner diameter was assumed to be the same as the rod outer diameter, and the
coil’s outer diameter and length were chosen to optimize τterf . In each case, there is a clearly optimal configuration
with respect to τterf . For the case of the 2 mm rod, the surface created by various values of coil outer diameter and
length is pictured in Figure 5.

From the figure, the optimal coil length is approximately, but not, equal to the rod length. There is a clear
optimal outer radius and coil quality decreases rapidly if the coil is thinner than optimal, but decreases rather slowly
for a thicker than optimal coil. The dimensions for each optimized coil are presented in Table 1.

Rod OD, mm Coil OD, mm Coil Length,mm τterf , sec.
1.5 10.0 14.8 5.7(10−5)
2.0 11.6 15.1 7.9(10−5)
2.5 13.2 15.4 9.8(10−5)

Table 1. Optimal coil geometries.

For the optimal cases, the field inside the Terfenol-D rod is shown in Figures 6-8. In each case, an interesting
qualitative feature is that the field intensity with the Terfenol-D is slightly less than the field intensity without the
Terfenol-D. In addition, field intensity at the end of the coil in the absence of the Terfenol-D is about 1/2 of the
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Figure 6. H resulting from 1 MA/m2 coil current for a 1.5 mm rod.
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Figure 7. H resulting from 1 MA/m2 coil current for a 2 mm rod.

value at the center of the coil. With the Terfenol-D, the field intensity at the end of the rods falls to about 1/4 to
1/3 of the center value. Each of the following plots represents the field produced in the Terfenol-D by a 1MA/m2

coil current. The field intensity for the optimal coils with and without the Terfenol-D are presented in Figures 6-8.

8. CONCLUSIONS

A volume integral model of a solenoid with a magnetostrictive core has been developed. This model readily lends
itself to solution via a short computer code. A definition for optimal coil geometry was developed that trades off the
average level of field intensity developed in the magnetostrictive drive rod with the power dissipation that is required
to create the field intensity. This cost function is denoted τterf . Using a code that discretizes the drive rod and
solves the volume integral formulation, optimal coil geometries were found for some specific rod sizes. Plots were
presented that show the qualitative characteristics of the optimization on τterf .

The 1-D character of magnetostrictive drive rod model is good in the sense that it can easily be incorporated
into an elaborate, yet manageable, dynamic model of the magnetostrictive actuator. It would be simple to include
the effects of a multiple coil arrangement, or to add magnetization to the rod due to applied stress and/or changing
temperature.
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