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Abstract— This work presents a new method of formulating
the current to force relationship for a three-pole radial
magnetic bearing. This relationship is readily inverted to yield
a general mapping from force to current that can be realized
by a three-phase motor drive. Position dependence of the
bearing forces and force slew rate limiting implications are
also explored.

I. INTRODUCTION

One impediment to the broader use of magnetic bearings
is their expense. If magnetic bearings could be designed
to use the three-phase power modules and controllers
commonly used in AC servo and vector drives, the cost
and complexity of magnetic bearings might be significantly
reduced.

Some progress has already been made with respect to
powering magnetic bearings with three-phase drives. An el-
egant permanent magnet biased homopolar bearing design
is described in both [1] and [2]. Although the PM-biased
topology has intrinsically low rotating and coil ohmic
losses and is directly amenable to utilization of a standard
three-phase drive, it would be useful to have an alternative
heteropolar bearing design. Heteropolar bearings typically
require less axial space along the shaft, and they are
much simpler in construction as compared to homopolar
bearings. The heteropolar design also eliminates the need
for permanent magnets, which may increase cost and place
restrictions on the bearings’ operating environment.

Schöb also describes a six-pole heteropolar bearing
driven by a three-phase supply in [2]. Although this design
allows the use of a three-phase drive, an additional DC bias
winding is required by this topology. A similar bearing with
twelve poles is presented in [3].

Three-pole heteropolar bearings have also been investi-
gated in the literature. Chen [4], [5] considered a bearing
with two poles wound in series driven by a single-phase
amplifier and the third coil driven by second single-phase
amplifier. However, the economy of the three-phase drive
is not realized by the two-amplifier design. In [6], a three-
pole bearing driven by a three-phase drive is considered.
However, the bearing is biased about the operating point
dictated by the support of the rotor’s weight in order
to invert the relationship between currents and forces. A
similar control approach is considered in [2], wherein the
bias is obtained by a separate DC winding in addition to a

three-phase drive. In [5], this biasing method was found to
yield a system with poor robustness, due to the three-pole
bearing’s intrinsic nonlinearity.

This work considers the three-pole bearing topology
driven by a three-phase drive, as in [6]. However, the
present approach does not bias the bearing about a nominal
operating point dictated by the rotor’s weight. Instead, a
new expression relating current and force is developed.
This expression is simple to invert, yielding a power-
minimal set of currents that realizes any desired force
without linearizing current about a nominal operating point
and in fashion that is amenable to the use of a standard
three-phase drive.

The position dependence of the force is then considered.
An expression for force as a general function of current
and position is derived. Linearizing this expression for
small rotor displacements yields a simple expression for
the position dependence of the bearing near the centered
position. Various control approaches are discussed for
accommodating the nonlinear position dependence of the
forces.

Lastly, slew rate limiting issues are considered. For the
typical radial magnetic bearing geometry consisting of two
more or less independent control axes, there is a desire
to operate at low or zero bias current level to minimize
resistive losses. However, low bias current levels can lead
to excessive voltage demand at low forces due to the
current-squared dependence of the magnetic force. This
phenomenon is known as slew rate limiting[7]. Although
the three-pole bearing considered in this work is run
without bias currents, it is shown that the bearing is not
subject to slew rate limiting problems of the severity of
encountered during unbiased operation of the common
eight pole bearing configuration.

II. DERIVATION OF THE CURRENT-FORCE

RELATIONSHIP FOR A CENTERED ROTOR

The relationship between current and force is first con-
sidered for the case of a centered rotor. This configuration
yields a simple relationship between current and force that
can readily be inverted. In later sections, the more general
case of an arbitrary rotor position will be considered to
investigate the variation of force with rotor position.
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Fig. 1. Three-pole bearing geometry.

The three-pole bearing configuration considered here is
indicated in Figure 1. Since magnetic bearings do not typ-
ically run in saturation, the reluctance of the core material
are neglected. Flux leakage, fringing, eddy current effects,
and hysteresis effects are neglected. Each bearing pole has
a cross-section area of a, a nominal air gap of g separating
the rotor and stator, and is wound by n turns of wire. The
magnetic permeability of free space is represented by μo.

For the purposes of this analysis, bearing force on the
rotor is represented as a complex number where the real
part of the number represents force in the x-direction and
the imaginary part of the force represents force in the y-
direction, i.e.:

f = fx + jfy (1)

Applying Maxwell’s Stress Tensor, the force contribution
of the nth pole, |fn|, has the amplitude:

|fn| =
(

a

2μo

)
B2

n (2)

where Bn is the flux density at the nth pole. The force
on the rotor is directed along an outward normal to the
rotor through the center of the pole of interest. To combine
the contributions of all poles, define matrix Λ where the
diagonal entries are complex numbers representing the line
of action of each force:

Λ = diag
[

1 ej2π/3 e−j2π/3
]

(3)

The total force can then be written as:

f =
(

a

2μo

)
BT ΛB (4)

where B is a vector of the fluxes going through each pole
of the bearing.

Further simplification eventually results if a transforma-
tion is defined which converts bearing quantities back and
forth from 3-vectors to complex-valued phasors. Defining
the vector k as:

k =
√

2
3

[
1 e−j2π/3 ej2π/3

]
(5)

the transformation of flux from vector B to phasor b is:

b = kB (6)

The common-mode component of B is neglected in this
transformation. However, since this component of B must
be zero due to flux conservation on the rotor, nothing is lost
in the transformation. The inverse of the transformation is:

B = Re (k∗b) = 1
2

(
k∗b + kT b̄

)
(7)

The over-bar denotes complex conjugate and the aster-
isk denotes conjugate transpose. Substituting (7) into (4)
yields:

f =
(

a

8μo

)(
k∗b + kT b̄

)T
Λ
(
k∗b + kT b̄

)
(8)

This equation can be simplified by noting some proper-
ties of Λ and k which can be verified by direct computation:

kkT = 0
kk∗ = 2
k{1, 1, 1}T = 0

ΛkT =
√

2
3 {1, 1, 1}T

Λk∗ = kT
(9)

When the identities of (9) are applied to (8), the result is:

f =
(

a

4μo

)
b2 (10)

Note that up to this point, no assumption has been made
about the centering of the rotor. Eq. (10) applies at an
arbitrary rotor position.

When the rotor is centered, there is a simple relationship
between current and flux. If the applied currents are bal-
anced 3-phase currents, the magnetic potential of the rotor
is at the same level as the stator so that each pole is acting
only against the reluctance of its own air gap. In this case,
the relationship between flux density and current for the
nth gap is:

Bn =
(

μo

g

)
nin (11)

Applying the phasor transformation to both sides of this
equation yields:

b =
(

μon

g

)
i (12)

where i is the phasor representation of phase current.
Substituting for flux in (10) yields a simple relationship
between current and force:

f =
(

μon
2a

4g2

)
i2 (13)

III. INVERSION OF CURRENT-FORCE RELATIONSHIP

The current-force equation is reminiscent of that of a
single horseshoe magnet: force is proportional to the square
of the current. However, unlike the single horseshoe, the
force and current are complex-valued. The current required
to obtain any desired force can be derived by solving (13)
for i:

ides = ±
√(

4g2

μon2a

)
fdes (14)

The desired currents can then be transformed back into
real-valued phase currents via:

iphase = Re(k∗ides) (15)
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Fig. 2. Current versus force direction for positive solution branch.

It should also be noted that since k is orthogonal to the
vector {1, 1, 1}T , there is no common mode component of
the desired phase currents. Since there is no common mode
component, the desired phase currents are realizable with
a three-wire, three-phase power supply.

Although the complex-valued inverse current-force rela-
tionship is relatively straightforward, practical usefulness
and additional insight can be gleaned by converting the
complex-valued results into equivalent real-valued expres-
sions.

Let force f be broken down into real and imaginary parts
as:

f = F (cos θ + j sin θ) (16)

This definition of force implies that the desired force has a
magnitude F that is directed at an angle of θ with respect
to the x−axis. The square-root of f is then:√

f = ±
√

F (cos θ
2 + j sin θ

2 ) (17)

The square-root operator takes the square root of the
magnitude and modifies the direction to one-half of the
angle of the desired force. The transformation from phasor
current back into desired phase currents can be performed
by unravelling (15) as:

iphase = ±
√

8g2F

3μon2a

⎡
⎢⎣

1 0
− 1

2 −
√

3
2

− 1
2

√
3

2

⎤
⎥⎦[ cos θ

2

sin θ
2

]
(18)

An interesting consequence of the half-angle property
occurs in the case in which the bearing is creating a
constant force that varies in angle as the rotor spins, as
is the case when the bearing is supporting a synchronous
imbalance. For every revolution of the rotor, the bearing
currents vary sinusoidally but only traverse a half-cycle for
every revolution. If one branch of (18) were used exclu-
sively (e.g. if the ± sign was always taken to be positive)
to yield a unique mapping between force and current,
there would be a large jump in commanded currents at
θ=0. The resulting plot of current versus force angle for
a constant desired force amplitude is shown in Figure 2.
The ambiguity of which branch to select could be solved in
practice in the context of a digital controller by picking the
branch that results in the smallest change from the currents

commanded during the previous time step. For the constant
magnitude rotating force case, the solution branch would
change with each revolution to avoid the jump at θ=0. The
discontinuity is avoided, yielding the smooth relationship
between force orientation shown in Figure 3.
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Fig. 3. Current versus force direction with adaptively selected sign.

IV. GENERALIZED CURRENT-FORCE RELATIONSHIP

Although the bearing’s current-force relationship has
been derived for the rotor in the centered position, a more
generalized expression needs to be obtained explore the
position dependence of the bearing’s force. To derive the
generalized expression, flux density in the bearing as a
function of coil current and position must be derived. This
flux density can then be substituted into (10) to obtain force
as a function of current and position. The derivation begins
by considering the magnetic circuit representation of the
bearing, as pictured in Figure 4.

Following the approach presented in [8], two loop equa-
tions and one flux conservation equation can be written
as:

1
μo

⎡
⎣g0 −g1 0

0 g1 −g2

g g g

⎤
⎦
⎡
⎣B0

B1

B2

⎤
⎦ = n

⎡
⎣1 −1 0

0 1 −1
0 0 0

⎤
⎦
⎡
⎣i0

i1
i2

⎤
⎦ (19)

By applying row operations, (19) can be re-arranged to:√
2
3

μo

⎡
⎢⎣ g0 − 1

2g1 − 1
2g2

0 −
√

3
2 g1

√
3

2 g2
1√
2
g 1√

2
g 1√

2
g

⎤
⎥⎦
⎡
⎣B0

B1

B2

⎤
⎦ =

ni ni ni0 1 2

0

oμ
g 1

oμ
g

2

oμ
g

Β0 Β1 Β2

Fig. 4. Equivalent magnetic circuit representation.



√
2
3n

⎡
⎣ 1 − 1

2 − 1
2

0
√

3
2 −

√
3

2
0 0 0

⎤
⎦
⎡
⎣ i0

i1
i2

⎤
⎦ (20)

If the analysis is continued in the phasor-transformed
variables, the third line of (20) is satisfied automatically.
Both sides of (20) can be pre-multiplied by the vector
[1,j,0] to discount the third equation and combine the two
remaining equations into one complex-valued equation

√
2
3

μo

[
g0

(
− 1

2 − j
√

3
2

)
g1

(
− 1

2 + j
√

3
2

)
g2

]⎡⎣B0

B1

B2

⎤
⎦

=
√

2
3n
[

1
(
− 1

2 − j
√

3
2

) (
− 1

2 + j
√

3
2

) ]⎡⎣ i0
i1
i2

⎤
⎦ (21)

If the matrix G is defined as:

G =

⎡
⎣ g0

g1

g2

⎤
⎦ (22)

and referring to the definition of k in (5), (21) can be re-
written more succinctly as:

1
μo

kGB = nkiphase (23)

Substituting for flux density and current in terms of their
phasor representations yields:

1
μo

kG
(

k∗b+kT b̄
2

)
= nk

(
k∗i+kT ī

2

)
(24)

The G matrix can be re-written to expose the dependence
of gap on rotor position:

G = gI − xRe (Λ) − yIm (Λ) (25)

Further simplification can be obtained if the complex-
valued rotor position, d, is defined as:

d = x + jy (26)

so that G can be re-arranged as:

G = gI − 1
2

(
d̄Λ + dΛ̄

)
(27)

where I represents the 3 × 3 identity matrix. Substituting
the definition of G from (27) into (24) and applying the
identities of (9) allows (24) to be simplified to:

g

μo

(
b −

(
d

2g

)
b̄

)
= ni (28)

Equation (28) contains both b and its complex conjugate.
To solve for b, a second equation can be obtained by taking
the complex conjugate of the entire eq. (28), implying the
system of equations:

g

μo

[
1 − d

2g

− d̄
2g 1

]{
b
b̄

}
= n

[
1 0
0 1

]{
i
ī

}
(29)

Solving (29) for b yields:

b =
4gμoni

4g2 − |d|2 +
2dμonī

4g2 − |d|2 (30)

which can be substituted into (10) to yield a general
expression for force as a function of position:

f =
(

a

4μo

)(
4gμoni

4g2 − |d|2 +
2dμonī

4g2 − |d|2
)2

(31)

A much simpler form can be obtained by linearizing for
small d:

f =
(

μon
2a

4g2

)(
i2 +

d

g
īi

)
(32)

If the current is specified as a function of desired force by
(14), force on the rotor simplifies to:

f = fdes + |fdes| d

g
(33)

V. CONTROL APPROACHES

Three possible methods of addressing the position de-
pendence of the force in a current-controlled bearing are:

• Position Feedback Linearization
• Flux Feedback
• Robust Controller Design

A brief description of each approach follows.

A. Position Feedback Linearization

It is common to control magnetic bearings by first
closing a stiff, high bandwidth control loop on the desired
bearing currents. If hysteresis and eddy current effects
can be neglected, this control loop effectively eliminates
internal dynamics of the bearing itself, leaving the bearing
as a more or less static mapping from current and position
to force.

It can be noted from (10) that, if the flux in the bearing is
specified, the position dependence of the force is removed.
Using (28), which maps a known bearing flux density onto
a set of coil currents, a correction on the centered rotor
force-to-current mapping can be obtained which exactly
inverts the position dependence of the bearing.

Let icmd denote the current that is actually commanded
to the current control. As in (14), ides is the desired current
that produced the desired rotor force in the centered rotor
position. From (12), it can be inferred that the desired flux
density is:

bdes =
(

μon

g

)
ides (34)

Substituting bdes for b in (28) and simplifying yields:

icmd = ides −
(

d

2g

)
īdes (35)

This simple correction to the commanded current inverts
the position dependence of the bearing, assuming that the
model accurately represents the current-force relationship
of the bearing. A controller for the rotor system as a whole
would then be designed assuming that the bearing acts like
a source of prescribed force. The current command that
produces this force is then obtained by (14) and (35).



i1

i0

i2

i3

Fig. 5. Eight-pole bearing wound in a four-quadrant configuration.

B. Flux Feedback

Alternatively if flux (or flux density) can be measured,
the high bandwidth loop can be closed on flux. The bear-
ing then becomes a flux-controlled bearing, rather than a
current-controlled bearing, and (10) can be inverted directly
to compute the required flux density corresponding to any
desired force. Although it may be possible to mount Hall
Effect sensors directly in the bearing’s air gaps to measure
flux density, a more robust method of implementing flux
feedback is through the use of small search coils wound
from fine gauge wire located around the bearing’s poles
close to the air gap. By integrating the search coil voltage
(and possibly fusing this estimate with a DC flux estimate
based on (30)), a measurement of flux in the bearing’s air
gaps can be obtained. A more detailed description of search
coil-based flux feedback is contained in [9].

C. Robust Controller Design

A third alternative, applicable to a current-controlled
bearing, would be to specify current as a function of force
using the centered rotor inversion in (10). Many magnetic
bearing applications (e.g. flywheels) support mainly a
synchronous imbalance load. If a synchronous imbalance
is being accommodated, the problem of interest would an
assessment of the stability of the bearing’s orbit. In this
case, a controller could be designed using the position-
linearized description of the bearing force from (33). The
nominal force magnitude required to counteract the mass
imbalance would replace the |fdes| in (33), resulting in a
system with a constant linear stiffness. However, since mass
imbalance is most likely a priori unknown, the value of this
constant stiffness would represent a structured uncertainty
in the system. Various robust control methods could then
be employed to design a linear controller that is robust to
the range of bearing stiffness implied by the expected range
of steady-state force.

VI. SLEW RATE LIMITING/NO BIAS OPERATION

Consider the four-quadrant eight-pole bearing pictured
in Figure 5. If each horseshoe has a total of 2n turns and
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Fig. 6. Effects of slew-rate limiting on a sinusoidal waveform.

each pole has an area of a, the total force along an axis is:

fx =
(

μon
2a

g2

)(
i20 − i21

)
(36)

where i0 represents the current in the horseshoe that pulls in
the positive direction and i1 is the current in the horseshoe
that pulls in the negative direction. The force slew rate (the
rate at which force changes with respect to time) is:

dfx

dt
=
(

2μon
2a

g2

)(
di0
dt

i0 − di1
dt

i1

)
(37)

The power-optimal method of selecting currents to real-
ize a desired force uses only one horseshoe at a time: the
current in the active horseshoe varies proportional to the
square root of the desired current, and the other horseshoe
carries no current. When the force passes through zero,
both currents are zero, implying that the obtainable force
slew rate is zero. In a typical bearing operation, each axis
produces a sinusoidally varying force to counteract the
imbalance of the shaft. With a sine function, the moment
at which the force passes through zero (where df/dt = 0)
coincides with the peak required force slew rate. The result
of the slew rate limiting is cross-over distortion around zero
force, as pictured in Figure 6. If the synchronous imbalance
load dominates the bearing force, the unbiased horseshoe
bearing system would traverse four slew rate limited zero
crossings per revolution.

For the three-pole bearing, the slew rate limiting condi-
tion can be explored by differentiating the centered force
equation, eq. (13), with respect to time:

df

dt
=
(

μon
2a

2g2

)
i
di

dt
(38)

The slew rate limiting condition occurs when i= 0. How-
ever, since (13) addresses both force axes simultaneously,
the i= 0 condition only occurs when force is zero on both
axes simultaneously (i.e. f = 0). During normal operations,
when the bearings support the rotor’s gravitational load plus
a synchronous imbalance force, forces along both axes are
typically never zero simultaneously.

For example, consider a symmetric rigid rotor supported
by two radial magnetic bearings with symmetric control.
Each bearing must support half of the gravitational load
and half of the imbalance load:

f =
mg
2

+
mω2

2
ejωt (ε − x) (39)



Solving (39) for f = 0 shows that the slew rate limiting
condition can occur when

ω =
√

g

|ε − x| (40)

where m is the mass of the rotor, g is acceleration due
to gravity, ε is the rotor unbalance eccentricity, and x is
the rotor motion phasor. The slew rate limiting condition
only occurs when the rotor’s speed is such that the force
due to the synchronous imbalance is exactly the same as
the gravitational load supported by the bearing, creating a
once-per-revolution slew rate limiting condition.

It should be stressed that this slew rate limiting condition
only occurs near a single speed. In contrast, the unbiased
eight-pole bearing is subject to slew rate limiting at all
speeds.

A. Simulations

To illustrate this, consider a simple mass of 10 kg
supported in a pair of three pole AMBs with pole area
= 6.5 cm2, 328 coil turns on each leg, a nominal radial
air gap of 1.0 mm, and a coil resistance of 0.5 Ω. For this
example, a simple PD control is implemented for position
with a current minor loop. The current loop gain on current
error is 400 V/amp while the target PD gains are 3600000
N/m and 8400 N-sec/m. In addition, (35) is implemented to
compensate for postion dependence of gap. The controller
is presumed digital with a sampling rate of 10 kSa/sec.
The mass is subject to a gravity load equal to its own
weight plus an unbalance due to mass eccentricity of 0.001
kg-m. Each actuator is assumed connected in a “Wye”
configuration to a 300 volt link through a conventional
three phase drive. Selection of the phase voltages uses a
space vector modulation approach[10] which means that
the phase voltages themselves tend not to be very sinusoidal
and are sometimes non-smooth.

Figure 7 illustrates the system behavior at a typical
rotor running speed. Although both force components pass
through zero, the voltage is well behaved and acceptably
small: for this system, phase voltage is limited to ±
173 volts. The coil currents are obviously not perfectly
sinusoidal, but the bearing forces are nearly exactly so.

Figure 8 shows the system behavior at the pathological
rotor speed, ω =

√
g/|e − x| = 288.01 rad/sec. Clearly,

the coil voltages spike once in each revolution as predicted.
However, because the controller samples at a finite rate,
the voltage actually never exceeds 154.61 volts in the sim-
ulation. With a much higher sampling rate, the controller
might attempt to request a much higher voltage. In any
case, limiting this peak voltage to 173 volts would clearly
not cause the system any problems. Indeed, the force time
history is nearly perfectly sinusoidal.

Figure 9 shows the response of the system to a step
vertical load applied to the mass at 0.05 seconds. The
initial lift–off event requires 173 volts while the step load
requires a peak of 146.0 volts. In any case, the system is
well behaved.
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Fig. 7. Position, bearing force, current, and phase voltage at 3150 RPM.
Maximum voltage is 51.4 volts
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Fig. 8. Position, bearing force, current, and phase voltage at 2750.4
RPM. Maximum voltage is 154.1 volts.
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Fig. 9. Position, bearing force, and phase voltage at 2989.4 RPM:
transient response to 300 N step load at 0.05 seconds with no unbalance.

VII. CONCLUSIONS

The current-to-force relationship for a three-pole AMB
has been re-derived in a way that permits simple in-
version. The inverse force-to-current mapping could be
implemented with a three-phase motor drive, potentially
reducing the complexity and cost of the magnetic bearing
system.

The resulting force-to-current mapping operates the bear-
ing without bias currents. Elimination of bias currents is
beneficial for both coil losses and rotating losses; however,
the lack of bias currents can also lead to force slew rate
limiting problems. Although scenarios exist in which force
slew rate limiting can occur for the three-pole bearing the
practical consequences are negligible, in contrast to more
conventional AMB control schemes.

REFERENCES
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