
A Rapid Procedure for Squirrel Cage Induction
Machine Finite Element Analysis Using

Magneto-Static Formulation.

Matteo Carbonieri, Nicola Bianchi

July 15, 2021

1 Introduction
This article presents a procedure to rapidly analyze the Induction Motor (IM)
by performing only Magneto-Static (MS) Finite Element (FE) simulations.

The nature of the IM perfectly fits in with the Time Domain (TD) analysis
[1], which allows to carefully consider the saturation and compute the rotor
cage induced currents. The cost of highly accurate FE analyses is the long
simulation time: also if the stator current and rotor speed are known, several
electric periods need to be simulated to obtain the rotor current steady state1.

The common approach for the IM analysis is based on the equivalent circuit,
which parameters are computed using Finite Element Analysis (FEA). The sat-
urated magnetizing inductance is derived from the no-load test and the rotor
parameters from the locked rotor simulation [2]. This hybrid method allows a
rapid analysis of the machine with lower accuracy with respect the TD approach.
As a manner of fact only the no-load saturation is considered, neglecting the
effect of the load current.

The idea described in this article is to simulate the IM by imposing both
stator and rotor currents as field sources in MS simulations. This target requires
a strict connection with the dq analytical model of the machine to identify the
position of the rotor current space vector and an FEA iterative procedure to
compute the correct amplitude of the current in each bar [3–5]. This approach
allows to obtain a picture of the on-load behavior of the motor and the iron
saturation is determined by both the magnetizing and torque current.

The IM analysis using MS simulation has the advantage of performing di-
rect on-load tests of the motor, without the use of any equivalent circuit with

1A common technique to speed up the rotor electrical transient is running TD simulations
with locked rotor and the cage resistivity defined as:

ρcage =
ρ∗cage

s

where ρ∗cage is the material resistivity defined at the simulation’s temperature. The rotor elec-
trical transient can be dramatically reduced by imposing the higher resistivity. The resistance
increases significantly, while the inductance remains the same with the consequence that the
time constant decreases multiplied by s. This method does not consider correctly the effect
of the harmonics, so it is useful only to compute the mean torque and the main harmonic of
the currents and flux linkages.
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previously computed parameters. The on-load saturation is better considered
than in the equivalent circuit approach, since both stator and rotor current are
impose to obtain the on-load field solution. Furthermore, the method performs
only MS simulations with significantly reduced computation time with respect
the TD approach.

This new analysis system is deeply connected to the dq model of the IM
making the procedure similar to that adopted for synchronous machines. The
description of the analytical dq model of the IM is reported to list the main
equations and concepts useful for the FEA procedure. In particular, the IM
model in the Rotor Field Oriented (RFO) reference frame is adopted for the
advantages that it brings for the connection with FEA.

The following part concerns the rotor equivalent winding definition. This
tool is fundamental for a correct definition of the current in the rotor bars.
Then, the full description of the analysis procedure is reported.

2 Equivalent Three-Phase Rotor Winding
Let us consider a cage IM. This particular type of rotor winding can be imag-
ined as a poly-phase winding in which each bar represents a different phase. The
on-load behavior of the three-phase IM is characterized by the slip between the
stator magnetizing field and the rotor. The relative motion between the mag-
netizing field and the rotor bars defines the operation of this kind of electrical
machine.

In the instant time t, ωs is the relative mechanical speed between the stator
field and the rotor, in electric radians per second. Considering a sinusoidal air-
gap flux density distribution, the induced voltage, at the terminals of each rotor
bar, can be expressed as:

e1 (t) = B3ph1 sin (ωsl t)Lstk
Di

2
ωsl

...

eQr (t) = B3ph1 sin [ωsl t− (Qr − 1)αe
r ]Lstk

Di

2
ωsl

(1)

where αe
r is the electrical rotor slot angle, Qr is the rotor slot number, Di and

Lstk are the inner diameter and the stack length. Rotor bar currents can be
written as following:

i1 (t) = B3ph1 sin (ωsl t− ϕr)
Di Lstk ωsl

2|żbar|
...

iQr (t) = B3ph1 sin [ωsl t− (Qr − 1)αe
r − ϕr]

Di Lstk ωsl

2|żbar|

(2)

where żbar = |żbar|ejϕr is the equivalent bar impedance żbar, that takes into
account the presence of cage short-circuit rings.

In Figure 1a it is shown that, when only the main harmonic of air-gap flux is
considered, spatial behavior of induced voltages and currents, in the rotor bars,
exhibits a sinusoidal waveform. The corresponding time phasor representation
is reported in Figure 1b.
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(a) Induced voltage and current spatial distribution in the slots of a squirrel cage
rotor. In the drawing, vsl indicates the relative speed between the air-gap flux density
and the rotor, in meters per second; αe

r is the rotor slots electrical angle.
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sr
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(b) Induced voltage and currents time phasors representation.

Figure 1: The induced voltage and currents in the rotor bars are represented
from the spatial point of view (Figure 1a) and with the corresponding time
phasors (Figure 1b).
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An interesting trick is considering a three-phase rotor equivalent winding
sinusoidally distributed in the rotor slots. Figure 2a shows a sketch of such a
three-phase rotor winding. The size of the slot current symbol indicates the
theoretical conductor density belonging to each phase within the rotor slots,
that is sinusoidally distributed, per each phase, along the rotor periphery. This
equivalence comes from the fact that the rotor replies to the stator magnetizing
flux with a rotating Magneto Motive Force (MMF) with the same number of
poles as the stator inducing field. Thus, from the stator point of view, the rotor
behavior is the same as a common three-phase winding.

At first, the equivalent rotor winding definition makes easier the machine
model construction, since the rotor has the same nature of the stator and it is
more intuitive to derive the voltage equation for the rotor circuits. Further, this
approach is very important for the machine simulations.

As introduced in ??, to perform MS FEA of the IM it is necessary to prop-
erly impose the currents inside the bars. This tool makes this operation quite
immediate, and also the computation of the rotor flux linkage in trivial using
an equivalent winding.

In a sinusoidal winding, the phase conductors are sinusoidally distributed in
the several slots; further, each slot is filled with conductors belonging to each
phase.

The vectors kra, krb and krc define the fill factor of any rotor slot, according
to a given phase:

kra,i = sin (αe
r/2 + αe

r(i− 1)) ;

krb,i = sin (αe
r/2 + αe

r(i− 1)− 2π/3)

krc,i = sin (αe
r/2 + αe

r(i− 1)− 4π/3)

(3)

where i = 1, . . . , Qr. The rotor winding factor is computed as following:

kwr =√(∑Qr
i=1 kra,i cos

(
2i−1
2 αe

r
))2

+
(∑Qr

i=1 kra,i sin
(
2i−1
2 αe

r
))2

∑Qr
i=1 kra,i

(4)

Theoretically, the winding factor of a sinusoidally distributed winding is equal
to π/4.

The number of conductors per phase of the rotor winding is fixed in order
to have the same number of effective conductors as the stator winding:

Nr kwr = Ns kws (5)

where Ns is the number of conductors per phase of the stator winding and
kws is the stator winding factor. The equivalence (5) accounts to facilitate the
parameter estimation of the equivalent circuit. The number of series conductors
per phase in each rotor slot results in:

ncsr,a =
Nr∑Qr

i=1 kra,i
kra;

ncsr,b =
Nr∑Qr

i=1 krb,i
krb

ncsr,c =
Nr∑Qr

i=1 krc,i
krc

(6)
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(a) Sketch of the three-phase equivalent rotor winding.

(b) Rotor current distribution with three-phase current sup-
plying.

Figure 2: Three-phase rotor current arrangement and peripheral current distri-
bution considering a common three-phase current supply.

The condition (5) makes the stator and rotor to have the same effective
conductors per phase. This means that, having also the same magnetic circuit,
the two windings produce the same magnetizing flux, when supplied by the
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same magnetizing current. Further, the synchronous inductances are almost
the same. They differ only from the leakage component due to the different
harmonic content of the two MMF and the different number of slots and slot
shape. On the other hand, the magnetizing component is the same:

Lms =
3

π
µ0

(
Ns kws

2p

)2
Di Lstk

g′

Lmr =
3

π
µ0

(
Nr kwr

2p

)2
Di Lstk

g′

(7)

Thus, the stator and rotor three-phase inductance are:

Ls = Lms + Lσs; Lr = Lmr + Lσr (8)

with Lσs and Lσr the leakage components. Considering the hypothesis (5) and
from (7):

Lms = Lmr = M (9)

where M is the three-phase mutual inductance between stator and rotor.

3 IM Equivalent Model
The definition of the rotor equivalent winding allows the squirrel cage IM to
be considered as a three-phase shorted circuited wound rotor machine. Steady
state stator and rotor voltage vector equations are:

v⃗s = Rs⃗is + jωs

(
Ls⃗is +Mi⃗r

)
0 = Rr⃗ir + jωs

(
Lr⃗ir +Mi⃗s

)
− jωme

(
Lr⃗ir +Mi⃗s

) (10)

Introducing the slip: s = (ωs − ωme) /ωs, rearranging the rotor voltage equa-
tion, it becomes:

0 =
Rr

s
i⃗r + jωs

(
Lr⃗ir +Mi⃗s

)
(11)

The first of (10) and (11) are linked with the equivalent circuit in Figure 3.

+

−
M

LrLs

Rs

Rr

sv⃗s
i⃗s i⃗r

t

L3

L1 L2

Figure 3: The steady-state circuital model of IM, with the mutual coupling
between stator and rotor highlighted. It is possible to model it using a grid of
inductances with the ideal transformer.
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The mutual coupling can be modeled using a grid of inductances, introducing
the ideal transformer, and the following relationships can be derived:

L1 = Ls − tM ; L2 = Lr −
M

t
; L3 = tM (12)

The arbitrary constant t can be chosen to obtain different forms of the IM
equivalent circuit.

3.1 Inverse-Γ form of the equivalent circuit and IM model
in RFO reference frame

The inverse-Γ form of the IM equivalent circuit [3, 6] is derived setting to zero
the inductance L2 in the model in Figure 3.

L1 = Ls −
M2

Lr
= Lt; L2 = 0; L3 =

M 2

Lr
= Lφ (13)

The ideal transformer constant t becomes a ratio of inductances: t = M/Lr. In
the inverse-Γ equivalent circuit, shown in Figure 4, Lt is the overall leakage tran-
sient inductance. The mutual magnetizing flux linkage (referred to the stator)
is determined by the stator current isq flowing in the magnetizing inductance
Lφ.

Using the inverse-Γ IM model, the overall rotor flux space vector is due only
to the d-axis stator current and the torque depends upon the q-axis current,
once the rotor flux has been created. In the RFO reference frame, the rotor
flux space vector lies along the d-axis and the q-axis component is equal to zero,
that is the RFO condition, i.e. λrd = λr and λrq = 0. From relationships:

λrq = Lrirq +Misq; 0 =
Rr

s
ird − ωsλrq (14)

imposing λrq = 0, it can be achieved:

irq = −M

Lr
isq; ird = 0 (15)

Stator dq voltage equations in in the RFO reference frame are:

vsd = Rsisd − ωsLtisq

vsq = Rsisq + ωsLsisd
(16)

and the rotor voltage equation is unique:

0 =
Rr

s
irq + ωsMisd =

Rr

s
irq + ωsλrd (17)

The stator dq flux linkages are given by:

λsd = Lsisd; λsq = Ltisq (18)

and the rotor flux linkages are expressed as:

λrd = Misd; λrq = 0 (19)
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From (17) the rotor slip angular frequency can be derived as:

ωsl = s ωs = −Rrirq
λrd

= p
PJr

Tdq
(20)

The torque equation in the RFO reference frame is:

Tdq =
3

2
p λrd irq (21)

or, alternatively, it can be expressed using the stator flux linkage and current:

Tdq =
3

2
p (λsdisq − λsqisd) (22)

In Figure 4, the RFO equivalent circuit of the IM is reported. The scheme shows
also the connection with the FEA model: once the stator and rotor currents are
determined (with the procedure in the following section), the stator and rotor
flux linkages are computed directly from the MS FEA. Finally, in Figure 5, the
space vector diagram of the machine is reported.

jωsLφ

jωsLt

+

−

+

jωsλ⃗r

−

i⃗s
jωsλ⃗s

isd

isq irq

+

−

Rr

s

Rs

v⃗s

Figure 4: Steady-state equivalent circuit, according to the RFO reference frame
equations. The magnetic coupling between stator and rotor is determined by
FEA.

jωsλs

is isq

isd

jωsLtis

jωsλrs

qλ

dλ
λrs

Lsisd
isqLt

λs

−irs

Figure 5: Space vector diagram of the IM analyzed using the RFO dq reference
frame.
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4 Magneto-static on-load analysis
The aim of this section is to describe a method for performing MS FEA of any
on-load working point of the IM. The core of the procedure is the rotor current
computation. For this purpose, several techniques have been developed. Some
of them are more general, and work out any type of IM; other techniques are
much faster, but just fit for open rotor slot IMs.

The analysis strategy presented in this work, has to be an effective alterna-
tive to the common techniques for the IM computation. In particular, the TD
analysis, proposed by many commercial software, is a very accurate tool, but it
takes a very long computational time.

The method presented here is based on the static formulation of the FE
problem, that has an inherently fast convergence. The key is that the rotor
induced current directly set inside the rotor bars as field sources, together with
the stator current.

For this purpose, a close connection between the analytical and FE model
is necessary. The adopted model as reference in the inverse-Γ model introduced
in the previous section, referred to the space vectors. Actually, this model is
nothing more than a simple and clear point of view for the machine currents
and fluxes vector relationships. In Figure 6, the basic inverse-Γ model of the
machine is reported. In red, the circuit parts, that are also modeled in FEA,
are highlighted.

Rs Lt

Lϕ

isd

is

isq irq

Rr

s

Figure 6: IM equivalent circuit, adopted to be linked to FEA. The red parts of
the circuit are modeled also in FEA.

The interesting part of adopting the model in Figure 6, and the ideas behind
it, is that the general approach becomes similar to a synchronous machine. In
fact, the d-axis current is the flux current, which produces the rotor flux linkage;
on the contrary, the q-axis currents are involved in the torque production.

The strategy presented below, is meant for analyzing the steady state oper-
ation of the IM. For this reason, as demonstrated in the previous section, the
rotor d-axis current is equal to zero. The current irq is related to the stator
current amplitude, from (15).

The FEA plays an important role in the determination of the rotor current
amplitude, that actually depends upon the saturation state of the machine, since
the inductances in (15) are deeply influenced by the iron saturation. In this way,
the FE model is fundamental to carefully take saturation into consideration.

In general, fixed the stator current, the procedure for the rotor current com-
putation is rather fast and few simulations are needed. The short computational
time represents an important advantage with respect the TD approach.
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A fundamental tool to generalize the procedure to any type of motor, is the
equivalent poly-phase rotor winding, in case of cage induction motors. The full
description of this tool is reported in section 2.

Finally, it is important to underline that the approach introduced in this
section is valid only for the first harmonic of the rotor current distribution.

4.1 reference frame adopted for FEA and the link with
the analytical model

At this moment, let’s consider a single position od the rotor with respect the
stator, and image to analyze a single time instant of the on-load behavior. The
stator current is fixed in the space and the rotor current has to be computed.
Further, in Figure 7, the rotor winding is represented as a uniformly distributed
winding for sake of simplicity2.

αs, αr, d

βs

βr

q

−ir is

λr

λs

Figure 7: dq reference frame adopted for simulations. The reference space vec-
tor diagram is also reported, with the rotor flux and current space vectors in
quadrature lying along the d- and q-axis.

In the time instant represented in Figure 7, the stator and rotor αβ systems
are one over the other. The definition of the synchronous dq reference frame the
fundamental first step of the procedure. For sake of convenience, it overlaps the
αβ reference frame.

In order to apply the rotor current computation procedure, the stator d
and q current components have to be known. The first information about the
rotor current is that the related space vector lies along the q-axis. On the other
hand, the amplitude has to be computed in order to verify λrq = 0, that is the
characteristic condition of the inverse-Γ model.

Before starting, it is important to remark that in the following particular
procedure, the rotor current distribution within the rotor slots is considered
uniform. It is the same as neglecting the effect of the rotor frequency on the
current crowding inside the slot. This is a reasonable hypothesis considering
the normal behavior of the IM at a low slip.

2Actually, in case of cage IM, a sinusoidally distributed winding has to be defined, in which
each phase is distributed in all the rotor slots (see section 2).

10



4.2 iterative procedure
This procedure is based on an iterative correction of the rotor current irq am-
plitude, until the condition λrq = 0 is reached.

In the following, only cage IMs will be considered. For this reason, the
equivalent rotor sinusoidal winding has to be defined according to the procedure
outlined in section 2. With the hypothesis of having the same number of effective
turns in the stator and rotor three-phase winding, the magnetizing components
of Ls and Lr are the same and equal to the three-phase mutual inductance
introduced in (8) and (9).

The analytical relationship between the stator and rotor current is the fol-
lowing:

irq = −M

Lr
isq (23)

where Lr = Lm+Lσr. Generally, the leakage inductance Lσr is much lower than
the magnetizing component M , thus, for the first iteration of the method, the
rotor current can be approximated as:

irq,1 = −isq (24)

Before starting the description of the method, it is important to highlight,
that the q-axis of an IM basically has a linear behavior, during the iterative
procedure. The general law (24) implicates that, the MMF along the q-axis
is almost equal to zero. Actually, the currents along this axis produces only
leakage fluxes, as shown in Figure 8, with a negligible iron saturation.

Figure 8: Flux produced by the interaction between stator and rotor q-axis
currents. It is a leakage flux.

For this reason, generally, only three iterations are needed to get the rotor
current amplitude that brings to zero the rotor q-axis flux linkage. So, the stator
d- and q-axis currents are already know, thus the first iteration imposed current
space vectors are:

is = isd + jisq
ir,1 = −jisq

(25)

In Figure 9, the first iteration field solution is reported. It is evident that the flux
lines within the rotor are not parallel to the d-axis, meaning that the d-axis rotor
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flux is not equal to zero. Further, in the field solution, also the current density
is plot, to show the sinusoidal current distribution along the rotor periphery. It
is clear that the direction of the rotor current space vector indicates also the
spatial direction of the first harmonic of the rotor MMF.

λr

λs
d

q

is
−ir,1

Figure 9: First iteration field solution. The rotor flux space vector does not lie
along the d-axis of the adopted reference frame: the rotor current amplitude is
not yet the correct value.

From the first iteration field solution, it is possible to compute the stator
and rotor d- and q-axis flux linkages:

λsd = Lsisd

λsq = Lsisq − Lmisq = Lσsisq

λsd = Lmisd

λsq = Lrirq − Lmirq = Lσrirq

(26)

and the stator and rotor leakage inductances can be isolated. The rotor current
for the second iteration can be obtained elaborating (23), remembering (24):

irq = −isq

(
1− Lσr

Lr

)
≃ −isq

(
1− Lσr

Lm

)
⇒ irq ≃ −isq

(
1− λrq

isq

isd
λrd

) (27)

then, the rotor current vector, applied in the second iteration is:

ir,2 = −j
(
isq +

λrq,1

λrd,1
isd

)
(28)

where λrq,1 and λrd,1 are the rotor flux linkages computed at the first iteration.
The points (λrq,1, irq,1) and (λrq,2, irq,2) represents a straight line in the plane

(λrq, irq).
The current irq to obtain λrq = 0 is computed as:

irq,3 =
λrq,2irq,1 − λrq,1irq,2

λrq,2 − λrq,1
(29)

12



and the rotor current space vector applied in the third iteration is:

ir,3 = −jirq,3 (30)

The third iteration field solution is reported in Figure 10.

λr

λs

d

q
is−ir,3

Figure 10: Third iteration field solution. The rotor flux space vector lies along
the d-axis of the adopted reference frame: the rotor current amplitude has the
correct value.

As can be noticed in the field solution in Figure 10, now, the flux lines inside
the rotor are almost parallel to the d-axis of the adopted reference frame. This
means that the rotor q-axis flux linkage is almost equal to zero.

The partial results of the iterative procedure are graphically reported in
Figure 11. The first interesting thing is that between the first and the third
iteration current, the difference is rather slight, meaning that the torque and
the flux linkages, computed at the first step are very similar to the third. This
result is generally true for open slot IMs, whereas for closed slots motors the
difference between the first and third step current is remarkable.

Figure 11: Iterative process results at each iteration. At the third step, the
rotor q-axis flux linkage is almost equal to zero.

Once the inverse-Γ model condition (λrq = 0) has been verified, the rotor
first harmonic current is considered to be correctly imposed in the third step

13



of the procedure. From the last field solution in Figure 10, besides the stator
and rotor flux linkages, also the torque and the rotor angular frequency can be
derived using (22) and (20).

5 Discussion
The method presented in this article shows a rapid prediction technique of the
rotor induced current when the stator current is known in the dq reference frame.
The procedure adopts the RFO reference frame, in which the rotor current lies
along the q-axis. The amplitude of the rotor current is computed using a FEA-
based iterative procedure, which ends when λrq = 0.

The procedure is particularly suitable for current driven controlled IMs, fol-
lowing the same analysis strategy of synchronous motors. However, this proce-
dure can be extended to grid connected machines and the skewing can be easily
considered coupling the model with the multi-slice theory [4, 7–9].

Thanks to the link with the dq RFO model, the mapping process is very
intuitive and completely similar to the synchronous machines. This makes the
procedure described in this article suitable for the analysis of variable speed
IMs [10].

In different works by the authors, the model has been “complicated” to con-
sider also the effect of the harmonics in the additional iron losses, cage losses
and torque ripple. The analysis can be extended to several position during the
on load operation, for the evaluation of the instantaneous torque and the flux
density pulsation in each mesh element.

In the code attached to this article, the base Rotor Field Oriented Analysis
(RFOA) procedure is implemented with the sinusoidal current distribution along
the rotor periphery and the single position analysis. The example reported
concerns a grid connected induction motor: the magnetizing current is obtained
from the no-load test and the on-load behavior using the RFOA, increasing the
q-axis current. If one excludes the no-load part, the analysis method is ready
for current controlled IMs with the rotor Field Oriented Control (FOC) or for
a complete mapping in the plane (isd, isq), to study the variable speed working
trajectories.

Acronyms
FE Finite Element.
FEA Finite Element Analysis.
IM Induction Motor.
MMF Magneto Motive Force.
MS Magneto-Static.
TD Time Domain.

Symbols

B3ph1 Three-phase fundamental air-gap flux density [T]
Lmr Rotor magnetizing inductance [H]
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Lms Stator magnetizing inductance [H]
Di Inner diameter [mm]
Lstk Stack length [mm]
Nr Rotor equivalent series conductors per phase
Ns Stator series conductors per phase
Qr Rotor number of slots
αe

r Rotor electrical slot angle [rad]
kwr Rotor equivalent winding factor
kws Stator winding factor
µ0 Vacuum permeability [H/m]
ωs Stator angular frequency [1/s]
ωsl Slip angular frequency [1/s]
g Air-gap [mm]
p The number of pole pairs
s Slip of the fundamental field with respect the

rotor
[-]
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